

CFRP Composites on the Shear Strengthening of Reinforced Concrete Beams

Compósitos de CFRP no Reforço ao Cisalhamento de Vigas de Concreto Armado

A. J. BEBER andriei@univali.br A. CAMPOS FILHO americo@ufrgs.br

Abstract

This study aims to explore the main structural implications on the use of *CFRP* composites for the shear strengthening of R/C beams. Thirty beams 300 cm long with a 15 x 30 cm cross-section were fabricated and strengthened in shear using different strengthening schemes, applying two *CFRP* composite systems. Failure loads and modes are analysed. The strengthening schemes are also analysed in order to provide valuable information regarding the rational usage of such peculiar material. Experimental results corroborate how versatile the *CFRP* composites can be, especially when tailored for a particular situation.

Keywords: shear strengthening; shear failure; concrete; CFRP; efficacy.

Resumo

Este estudo tem por objetivo explorar as principais implicações estruturais da aplicação dos compósitos de *CFRP* ao cisalhamento de vigas de concreto armado. Para o desenvolvimento desse estudo foram construídas 30 vigas com seção transversal 15x30 cm com 300 cm de comprimento. Destas, duas serviram como referência e as demais foram reforçadas, adotando-se diferentes configurações de reforço ao cisalhamento, empregando dois tipos de sistema de reforço. Os resultados de cargas de ruptura, assim como seus respectivos modos, são analisados e confrontam-se as diferentes configurações de reforço estudadas. Do ponto de vista de aplicação, observou-se a grande versatilidade dos compósitos, permitindo uma infinidade de configurações, especialmente desenvolvidas para uma determinada situação. Além de consideráveis incrementos na resistência das vigas reforçadas, a avaliação de diferentes configurações de reforço permite uma aplicação mais racional dos compósitos, cujo custo é bastante elevado.

Palavras-chave: reforço ao cisalhamento, concreto armado, compósitos de CFRP.

^a CETAU, UNIVALI, 5^a Avenida S/N, Balneário Camboriú/SC, Brasil;

^b CEMACOM, PPGEC, UFRGS, Av. Osvaldo Aranha, 99 3º andar, Porto Alegre/RS, Brasil.

1 Introduction

During the last years several research centers worldwide have been studying numerous materials and methods for the repair and strengthening of reinforced concrete structures. One of the most remarkable techniques involves the bonding of composite materials and more specifically *CFRP* composites as a feasible substitute for the traditional epoxy-bonded steel plates, which have been used with undoubted success since the 1960's [1].

Initially *CFRP* composites were developed for aerospace, automotive, naval, sporting goods and military applications. Nowadays, however, they represent a viable solution for the strengthening of reinforced and prestressed concrete structures. By embedding continuous fibers in a resin matrix the mechanical properties of composites can be tailored to a particular application varying the amount and orientation of the fibers in different directions [1]. Some of these advantages may be summarized as follows: immunity to corrosion; low self-weight; high strength-to-weight and stiffness-to-weight ratios; enhanced durability and the ability to form complex shapes [2].

The number of *CFRP* composites applications however, is still reduced especially due to high material costs. Nevertheless there is great potential in the use of *CFRP* composites for the rehabilitation concrete structures. *CFRP* composites may represent a practical solution to extending the service life of a particular structure, which could not be strengthened using traditional construction materials [3]. Additionally, the ability of carrying out the entire strengthening procedure in short periods of time without disrupting the use of the structure is undoubtedly the major advantage of the composites.

2 CFRP composites in the strengthening of R/C beams

The feasibility of the flexural strengthening of R/C beams is based on refined analytical models allowing fairly precise results. In some cases, however, the shear failure load may be exceeded [4, 5, 6]. Therefore it is interesting to guarantee that the beam's shear strength be higher than its flexural strength. The reliability of flexural strengthening with *CFRP* composites has opened up the possibility of extending this technique to strengthen the shear capacity of R/C beams [7].

In such cases, *CFRP* composites are also efficient in increasing the shear capacity of R/C beams. Nevertheless the number of applications is significantly reduced and very few studies have addressed the subject.

The most efficient shear strengthening scheme is *total wrapping* that is the wrapping of the entire beam cross section [figure 1(a)]. Occasionally this option may not be practical. Other structural elements such as an adjacent slab may prevent the wrapping procedure. Holes may be made in order to allow the wrapping of *CFRP* strips; however this option may be complex and costly.

The commonest scheme is done by bonding *CFRP* composites on to the sides and bottom of the beam [figure 1(b)]. This scheme is known as "U" wrap. It constitutes a practical and efficient solution in enhancing the shear strength of beams [8, 9].

Finally in some cases it may not be possible to bond the *CFRP* composites on to the bottom of the beam. In these cases *CFRP* composites are only bonded to the sides [figure 1(c)]. The efficiency of such scheme is uncertain due to possible anchorage deficiencies.

Shear strengthening with *CFRP* composites may also be done continuously or by means of strips, conveniently spaced. The use of strips may be interesting in terms of material optimization. Researchers have reported using 40% less material for the same increase in shear capacity [4]. Additionally, if the whole beam length should be strengthened, the use of strips may allow moisture migration.

3 Experimental program

The experimental work consisted of testing 30 simply supported, unloaded, rectangular beams externally strengthened in shear with no additional anchorage devices. The main objective of this study was the evaluation of failure loads and modes of failure for 12 different strengthening schemes. All the beams had a rectangular cross-section with a 15cm width, 30cm height and a length of 300cm as observed in figure 2.

These beams did not receive any shear reinforcement but were heavily reinforced in flexure with six 16mm steel bars (two layers) at the tension side two 16mm steel bars at the compression side. All the rebars had a 1.5cm concrete cover. The absence of shear reinforcement was induced in order to isolate the strengthening effect on the enhancement of shear strength. The use of stirrups would mean the introduction of another variable, which could prevent the development of reliable theoretical models.

Table 1 presents, schematically, the strengthening schemes tested in this study. Beams V8_A and V8_B These beams did not receive any shear reinforcement but were heavily reinforced in flexure with six 16mm steel bars (two layers) at the tension side two 16mm steel bars at the compression side. All the rebars had a 1.5cm concrete cover. The absence of shear reinforcement was induced in order to isolate the strengthening effect on the enhancement of shear strength. The use of stirrups would mean the introduction of another variable, which could prevent the development of reliable theoretical models.

Table 1 presents, schematically, the strengthening schemes tested in this study. Beams V8_A and V8_B were not strengthened at all and acted as control beams.

Table 1 - Strengthening schemes.

A local batch plant supplied concrete used in the construction of the beams. Each batch provided concrete for one beam and nine 10 x 20cm cylindrical test specimens used to determine concrete's mechanical properties. The specimens were tested for compression and tension. The

average concrete compressive strength was 32.8 MPa, with a variation coefficient of 5.24%. The average concrete tension strength was 2.9 MPa, with a variation coefficient of 9.09%.

The CA50 steel bars were tested under uniaxial tension. The average measured yield stress for the bars was 625.1 MPa.

Two *CFRP* strengthening systems, currently available in the market, were used in this research program (one prefabricated and one cured in situ). The mechanical properties according to the manufacturers of these strengthening systems are presented in table 2 [1,10].

Table 2 - CFRP strengthening systems.

Property	Prefabricated laminates [10]	Cured in situ sheets [1]	
Tensile strength	2500 MPa	3400 MPa	
Modulus of elasticity	205000 MPa	230000 MPa	
Failure strain	0.0122	0.0148	
Weight by unit area	-	200 g/m ²	
Thickness	1.4mm	0.111mm	
Width	5cm	25cm	

All members were subjected to four-point loading with two equivalent symmetric point loads. Assessment of structural performance of each strengthening schemes was carried out based on the monitoring of loads, displacements and strains, throughout a computerized system. The test set up may be observed in figure 3.

Figure 3 - Test set-up [unit in cm].

The monotonic static load was applied incrementally at a rate of 2 mm/s through a programmable servo-hydraulic testing machine. Loads were measured by a load cell. Deflections were measured using linear variable displacement transducers (LVDT).

4 Test results and discussion

The use of *CFRP* composites in the shear strengthening implies significant modifications on the behavior of R/C beams. Increases in failure load were significant. In some cases the use the failure mode changed from shear controlled to a bending controlled mode.

Particularly for the beams in this study, the total shear strength was resisted by the sum of the concrete and composite contributions, since these beams did not have any shear reinforcement.

The observed failure modes in this study included: diagonal tension (control beams), *CFRP* rupture associated with debonding and, in some cases, concrete cover failure.

Loads and modes of failure results for each bema are presented in table 3. Beams were grouped in order to allow the comparison regarding orientation, distribution, amount and type of strengthening system.

Beams V8_A and V8_B behaved as expected. Since these beams did not have any shear reinforcement, failure mode was controlled by diagonal tension in a sudden way with the formation of a classical shear crack at a 45° inclination related to the longitudinal axis. It is important to stress that the beams were tested up side down, therefore all the shear cracks will appear inverted in the pictures.

4.1 Beams strengthened with strips at 90°

The observation of these beams confirmed the expectation that total wrapping although complex presented the best performance. Failure load was increased up to 146.2%.

On the other hand, the performance of remaining beams was relatively similar especially in terms of increasing failure load. It is important to mention a relative dispersion observed in the results for the same strengthening schemes. This situation can be partially explained by the inherent difficulties in preparing the beam edges in "L" and "U" strengthening schemes.

Despite presenting similar increases in strength, failure modes presented by the beams with strips bonded only to the sides, "L" type and "U" type, oriented at 90°, were different. Failure modes presented by the beams with strips bonded only to the sides was controlled by *CFRP* debonding, as observed in figure 4. In this figure it is also possible to see the formation of a major crack, oriented approximately at 45° along almost the entire shear span. This crack crosses the strips defining as a result the anchorage lengths of each strip.

Figure 4 - Detail of failure mode in beams V9_A, V9_B e V21_A.

The "L" type presented the most stable results of this group. Increase in failure load fluctuated between 80.6% and 88.8%. The idea of applying "L" strips was motivated by two aspects: enhance the anchorage conditions and allow the comparison with the results provided by the inclined strips. Failure mode for these beams was characterized by the combination of debonding and *CFRP* tension rupture.

V8.A 114.70 V8.A 112.98 V8.A 112.98 V8.A 112.98 V8.A 20.338 83.2 V1.A Realark 20 - strips - 90° 21.97 88.8 V1.B 21.97 88.8 V1.LA 11.98 66.2 V1.LA 11.98 66.2 V1.LA 11.98 66.2 V1.LA 11.98 66.2 V1.B Realark 20 - strips - 90° 11.93 10.5075 $CFRP$ debonding 196.85 72.9 V1.LA 11.93 10.5075 $CFRP$ debonding 120.577 80.62 V1.LA 10.5075 $CFRP$ debonding 120.32 104.4 V12.B $Replark 20 - strips - 45°$ $fully wrap$ 0.6615 $CFRP$ debonding 123.02 102.33 V12.B Replark 20 - continuous - 90° $12.wr$	Beam	Strengthening schem	ne	CFRP amount [m ²]	Failure mode	Failure load [kN]	Increase [%]
V9_B Image: State of the second	V8_A				diagonal tangian	114.70	-
V9.A 196.24 72.4 V9.B Replack 20 - strips - 90° 28.58 83.2 V10.A Image: state point 20 - strips - 90° 21.497 88.8 V17.A Replack 20 - strips - 90° "L" wrap 0.5075 CFRP debonding followed by rupture 214.97 88.6 V1.A Replack 20 - strips - 90° "L" wrap 0.5075 CFRP debonding rupture 244.97 88.6 V1.A Replack 20 - strips - 90° "U" wrap 0.5075 CFRP debonding rupture 249.60 119.3 V1.A Replack 20 - strips - 90° "U" wrap 0.6615 CFRP debonding rupture 222.71 104.4 V12.B Replack 20 - strips - 45° rully wrap 0.6615 CFRP debonding rupture 230.30 78.6 V12.B Replack 20 - strips - 45° rully wrap 0.5489 CFRP debonding rupture 230.26 102.3 V13.A Image: rupture Side bonding 0.7860 CFRP debonding 251.50 120.9 V14.B Replack 20 - continuous - 90° rumap 0.2489 CFRP debonding 251.50 120.9 V15.B Repla	V8_B		-	_		112.98	-
V9_B Needer, 20 - strips - 90° No 0.4200 CFRP debonding 208.58 83.2 V12_A Reclark 20 - strips - 90° 12.4 wrap 0.5824 CFRP debonding 214.97 88.8 V10_A Image: strip - 90° 12.4 wrap 0.5824 CFRP debonding 214.97 88.8 V11_A Reclark 20 - strips - 90° 12.4 wrap 0.5075 followed by 211.98 86.2 V12_A Reclark 20 - strips - 90° 12.4 wrap 0.5075 followed by 249.60 119.3 V12_A Reclark 20 - strips - 90° 12.4 wrap 0.6615 CFRP debonding 280.24 146.2 V12_A Reclark 20 - strips - 45° fully wrap 0.6615 CFRP debonding 233.0 78.6 V12_B Replark 20 - strips - 45° Side 0.3891 CFRP debonding 23.63 108.0 V12_B Replark 20 - strips - 45° 'L'' wrap 0.5489 CFRP debonding 23.63 108.0 V13_A Replark 20 - continuous - 90° 'L'' wrap 0.7860 CFRP debonding 251.50 120.9 V13_B Replark 20 -	V9_A		side bonding	0.4200	CFRP debonding	196.24	72.4
V21.A Roblerk 20 - strips - 90° 230.38 102.4 V10.A Image: strips - 90° 1.1 * wrap 0.5824 CFRP debonding followed by rupture 211.98 86.2 V11.A Image: strips - 90° 1.1 * wrap 0.5075 CFRP debonding followed by rupture 196.85 72.9 V12.A Realark 20 - strips - 90° 1.0 * wrap 0.5075 CFRP debonding followed by rupture 196.85 72.9 V12.A Image: strips - 90° 1.0 * wrap 0.6615 CFRP debonding followed by rupture 224.90 119.3 V12.B Realark 20 - strips - 90° 5/36 0.3891 CFRP debonding followed by rupture 230.30 78.6 V12.B Realark 20 - strips - 45° 12.4 wrap 0.5489 CFRP debonding followed by rupture 230.36 102.3 V13.A Image: strips - 45° 12.4 wrap 0.5489 CFRP debonding followed by rupture 230.26 102.3 V13.B Replark 20 - continuous - 90° 12.4 wrap 0.7860 CFRP debonding (flexure) 230.26 102.3 V14.A Replark 20 - continuous - 90° 12.0 Concrete cr	V9_B					208.58	83.2
V10_A 214.97 88.8 V10_A Realark 20 = strips = 90° 'L' wrap 0.5824 CFRP debonding followed by rupture 211.98 86.2 V11_A Realark 20 = strips = 90° 'U' wrap 0.5075 CFRP debonding followed by rupture 235.77 80.6 V12_B Realark 20 = strips = 90° 'U' wrap 0.6615 CFRP debonding followed by 249.60 119.3 V12_B Realark 20 = strips = 90° Side bonding 0.3891 CFRP debonding followed by 230.26 104.4 V12_B Realark 20 = strips = 45° Side bonding 0.3891 CFRP debonding followed by 230.26 102.3 V13_A Replark 20 = continuous = 90° 'L' wrap 0.5489 CFRP debonding followed by rupture 230.26 102.3 V13_B Replark 20 = continuous = 90° 'L' wrap 0.7860 CFRP debonding followed by rupture 244.01 114.3 V14_B Replark 20 = continuous = 90° 'U' wrap 0.7860 CFRP debonding followed by rupture 251.50 120.9 V14_A Image: strips = 45° Side bonding 0.7860 CFRP deb	V21_A	Replark 20 – strips – 90°	Ū			230.38	102.4
V10.B L^* wrap 0.5824 followed by rupture 211.98 86.2 V12.A Realisk 20 = strips = 90° U^* wrap 0.5075 CFRP debonding followed by rupture 196.85 72.9 V11.A U^* wrap 0.5075 CFRP debonding followed by rupture 196.85 72.9 V11.B Realisk 20 = strips = 90° U^* wrap 0.5075 CFRP debonding followed by rupture 19.8 63.3 V12.A Realisk 20 = strips = 90° $fully$ wrap 0.6615 CFRP debonding followed by rupture 232.71 104.4 V12.B Realisk 20 = strips = 90° $fully$ wrap 0.6615 CFRP debonding followed by rupture 230.30 78.6 V12.B Replark 20 = strips = 45° $fully$ wrap 0.5489 CFRP debonding followed by rupture 230.26 102.3 V13.B Replark 20 = continuous = 90° U^* wrap 0.9498 CFRP debonding followed by rupture 267.74 143.1 V14.A M_{21} M_{21} M_{21} M_{21} M_{22} M_{21} M_{21} M_{22} M_{21} M_{22} M_{21} <	V10_A	"L" wrap		0.5824	CFRP debonding followed by	214.97	88.8
V17.A Replark 20 - strips - 90° U' wrap 0.5075 CFRP debonding followed by rupture 196.85 72.9 V11.B Replark 20 - strips - 90° U' wrap 0.5075 CFRP debonding followed by rupture 196.85 72.9 V12.A Replark 20 - strips - 90° fully wrap 0.6615 CFRP rupture 254.57 123.6 V12.B Replark 20 - strips - 90° side bonding 0.3891 CFRP debonding 230.26 102.3 V12.B Side bonding 0.5489 CFRP debonding 236.83 108.0 V13.A Replark 20 - strips - 45° side bonding 0.7860 CFRP debonding 230.26 102.3 V13.B Replark 20 - continuous - 90° side bonding 0.7860 CFRP debonding 244.01 114.3 V13.B Replark 20 - continuous - 90° rur wrap 0.9498 CFRP debonding 265.75 120.9 V15.B Image: side bonding 0.7860 CFRP debonding 266.78 122.8 97.5 V14.A Image: side bonding 0.7860 CFRP debonding 266.78 125.6 V14.A Image: side bo	V10_B		"L" wrap			211.98	86.2
V11.A $CFRP$ debonding 196.85 72.9 V11.B $CFRP$ debonding 196.85 72.9 V12.B $Reolark 20 = strios = 90^{\circ}$ 185.86 63.3 V12.A $Iuly$ wrap 0.5075 $CFRP$ debonding 249.60 119.3 V12.B $Reolark 20 = strios = 90^{\circ}$ $fully$ wrap 0.6615 $CFRP$ rupture 254.57 123.6 V12.B $Reolark 20 = strios = 90^{\circ}$ $side$ 0.3891 $CFRP$ debonding 203.30 78.6 V12.B $Replark 20 = strips = 45^{\circ}$ $side$ 0.3891 $CFRP$ debonding 230.26 102.3 V13.A $Replark 20 = strips = 45^{\circ}$ $side$ 0.7860 $CFRP$ debonding 230.26 102.3 V13.A $Replark 20 = continuous = 90^{\circ}$ U° wrap 0.9498 $CFRP$ debonding 244.01 114.3 V13.B $Replark 20 = continuous = 90^{\circ}$ U° wrap 0.9498 $CFRP$ debonding 244.01 114.3 V14.B $Replark 20 = continuous = 90^{\circ}$ U° wrap 0.260 $CFRP$ debonding 244.85 97.5 V15.B	V17_A	<i>Replark 20</i> – strips – 90°			Tupture	205.57	80.6
V1.8 U^{D} wrap 0.5075 followed by rupture 249.60 119.3 V12.8 Reclark 20 - strips - 90° 232.71 104.4 V12.4 Image: Side bonding 0.6615 CFRP rupture 254.57 123.6 V12.8 Reclark 20 - strips - 45° side bonding 0.3891 CFRP debonding 203.30 78.6 V12.8 Replark 20 - strips - 45° side bonding 0.3891 CFRP debonding 236.83 108.0 V19.A Replark 20 - strips - 45° 'L' wrap 0.5489 CFRP debonding 236.83 108.0 V13.A Replark 20 - continuous - 90° 'L' wrap 0.5489 CFRP debonding 236.13 108.0 V13.A Replark 20 - continuous - 90° 'L' wrap 0.9498 CFRP debonding 251.50 120.9 V15.B Image: Side bonding 0.7860 CFRP debonding 266.78 126.5 V14.A Image: Side bonding 0.7860 CFRP debonding 267.74 143.1 V16.A Image: Side bonding 0.7860 CFRP debonding 267.72 223.2 V16.A Image	V11_A				CFRP debonding followed by rupture	196.85	72.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V11_B		"U" wrap	0.5075		249.60	119.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V17_B	<i>Replark 20</i> – strips – 90°				185.86	63.3
V18_A Rebiark 20 - strips - 45° Rebiark 20 - strips - 45° Side bonding 0.3891 CFRP debonding 236.83 108.0 V19_A Replark 20 - strips - 45° *L* wrap 0.5489 CFRP debonding 236.83 108.0 V19_B Replark 20 - strips - 45° *L* wrap 0.5489 CFRP debonding 236.83 108.0 V19_B Replark 20 - strips - 45° *L* wrap 0.5489 CFRP debonding 236.83 108.0 V13_A Replark 20 - continuous - 90° *L* wrap 0.5489 CFRP debonding 230.26 102.3 V13_B Replark 20 - continuous - 90° *L* wrap 0.7860 CFRP debonding 251.50 120.9 V15_B Image: Continuous - 90° *U* wrap 0.9498 CFRP debonding 248.5 97.5 V16_A Image: Continuous - 90° rully wrap 1.230 concrete crushing 246.01 114.3 V16_B Replark 20 - continuous - 90° rully wrap 1.230 concrete crushing 246.02 255.6 V16_A Image: Side bonding 0.7860 CFRP debonding 266.78 125.6	V12_A				CFRP rupture	232.71	104.4
V00,A Reolark 20 - strips - 45° Side bonding 0.3891 CFRP debonding 203.30 78.6 V12,B Replark 20 - strips - 45° Side bonding 0.3891 CFRP debonding 236.83 108.0 V19,B Replark 20 - strips - 45° *L* wrap 0.5489 CFRP debonding 236.83 108.0 V13,A Replark 20 - continuous - 90° *L* wrap 0.5489 CFRP debonding 230.26 102.3 V13,A Replark 20 - continuous - 90° *L* wrap 0.7860 CFRP debonding 251.50 120.9 V15,B Image: Side bonding 0.7860 CFRP debonding 248.5 97.5 V16,A Image: Side bonding 0.9498 CFRP debonding 248.5 97.5 V16,A Image: Side bonding 0.9498 CFRP debonding 248.5 97.5 V16,A Image: Side bonding 0.7860 CFRP debonding 248.5 97.5 V14,A Image: Side bonding 0.7860 CFRP debonding 256.78 125.6 V14,A Image: Side bonding 0.4200 CFRP debonding 251.11 256.78 125.6	V18_A		tully wrap	0.6615		254.57	123.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V20_A	Replark 20 – strips – 90°				200.24	140.2
V14_B Replark 20 - strips - 45° bonding CFRP debonding 236.83 108.0 V19_A L^* wrap 0.5489 CFRP debonding 230.26 102.3 V13_A L^* wrap 0.5489 CFRP debonding 230.26 102.3 V13_B Replark 20 - strips - 45° $side$ bonding 0.7860 CFRP debonding 244.01 114.3 V13_B Replark 20 - continuous - 90° U^* wrap 0.9498 CFRP debonding 224.85 97.5 V16_B Replark 20 - continuous - 90° U^* wrap 0.9498 CFRP debonding 244.01 114.3 V16_B Replark 20 - continuous - 90° U^* wrap 0.9498 CFRP debonding 224.85 97.5 V16_A Image: Side bonding 0.7860 CFRP debonding 266.78 125.6 V14_A Side bonding 0.7860 CFRP debonding 266.78 125.6 V14_A Side bonding 0.7860 CFRP debonding 241.12 111.8 V20_B Side bonding 0.4200 CFRP debonding 255.62 151.1 V22_B CFK 200/2	V12_B		side	0 3891	CFRP debonding	203.30	78.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V14_B	Replark 20 – strips – 45°	bonding	0.5091		183.30	61.0
V19_B Replark 20 - strips - 45° "L" wrap 0.5489 followed by rupture 230.26 102.3 V13_A $3ide$ $3ide$ 0.7860 CFRP debonding 244.01 114.3 V13_B Replark 20 - continuous - 90° $3ide$ 0.7860 CFRP debonding 251.50 120.9 V15_B $Wrap$ 0.9498 CFRP debonding 216.74 143.1 V16_B Replark 20 - continuous - 90° $Wrap$ 0.9498 CFRP debonding 224.85 97.5 V16_A $Wrap$ $Replark 20 - continuous - 90° Replark 20 - continuous - 45° Replar$	V19_A		"L" wrap	0.5489	CFRP debonding followed by rupture	236.83	108.0
Replark 20 - strips - 45° side bonding 0.7860 CFRP debonding 244.01 114.3 V13_A $ide bonding$ 0.7860 CFRP debonding 251.50 120.9 V13_B Replark 20 - continuous - 90° $i'U'' wrap$ 0.9498 CFRP debonding 276.74 143.1 V16_B Replark 20 - continuous - 90° $i'U'' wrap$ 0.9498 CFRP debonding 267.74 143.1 V16_A fully wrap 1.230 concrete crushing (flexure) 367.92 223.2 V18_B Replark 20 - continuous - 90° $fully wrap$ 1.230 concrete crushing (flexure) 367.92 223.2 V14_A ide $bonding$ 0.7860 CFRP debonding 256.78 125.6 V14_A ide $bonding$ 0.7860 CFRP debonding 241.12 111.8 V20_B ide $bonding$ 0.4200 CFRP debonding 256.78 125.6 V21_B ide $bonding$ 0.4200 CFRP debonding 251.10 250.22 97.7 V21_B ide $o.7800$ CFRP debonding <	V19 B					230.26	102.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· 19_B	Replark 20 – strips – 45°			. aptar o	230.20	102.5
V13_B Replark 20 - continuous - 90° $bonding$ $bonding$ $cFRP$ debuilding 251.50 120.9 V15_B U'' wrap 0.9498 $CFRP$ debunding 276.74 143.1 V16_B Replark 20 - continuous - 90° U'' wrap 0.9498 $CFRP$ debunding 224.85 97.5 V16_A Image: Continuous - 90° $fully$ wrap 1.230 concrete crushing (flexure) 367.92 223.2 V18_B Replark 20 - continuous - 90° $fully$ wrap 1.230 concrete crushing (flexure) 367.92 223.2 V14_A Image: Continuous - 90° $side$ 0.7860 CFRP debonding 256.78 125.6 V14_A Image: Continuous - 45° $side$ 0.7860 CFRP debonding 256.78 125.6 V14_A Image: CFK 200/2000 - strips - 90° $side$ 0.4200 CFRP debonding 255.2 97.7 V22_B $CFK 200/2000 - strips - 90°$ $side$ 0.3891 CFRP debonding 251.19 120.7 V21_B $CFK 200/2000 - strips - 45°$ $side$ 0.3891 CFRP debonding 271.4	V13_A		side bonding	0.7860	CFRP debonding	244.01	114.3
V15_B $U'' wrap$ 0.9498 CFRP debonding 276.74 143.1 V16_B Replark 20 - continuous - 90° $U'' wrap$ 0.9498 CFRP debonding 224.85 97.5 V16_A Image: side bonding fully wrap 1.230 concrete crushing (flexure) 367.92 223.2 V18_B Replark 20 - continuous - 90° fully wrap 1.230 concrete crushing (flexure) 404.82 255.6 V14_A Side bonding 0.7860 CFRP debonding 266.78 125.6 V15_A Replark 20 - continuous - 45° side bonding 0.4200 CFRP debonding 285.82 151.1 V20_B Side bonding 0.4200 CFRP debonding 25.02 97.7 V21_B Side bonding 0.3891 CFRP debonding 271.40 138.4 V22_A CFK 200/2000 - strips - 45° Side bonding 0.3891 CFRP debonding 271.40 138.4	V13_B					251.50	120.9
V15_B $U'' wrap$ 0.9498 CFRP debonding 224.85 97.5 V16_A $Iully wrap$ 1.230 $concrete crushing (flexure)$ 367.92 223.2 V16_A $Iully wrap$ 1.230 $concrete crushing (flexure)$ 367.92 223.2 V16_A $Iully wrap$ $Iully wrap$ $Iully wrap$ $Iully wrap$ $Iully wrap$ 367.92 223.2 V14_A $Iully wrap$		Replark 20 – continuous – 90°				276 74	142.1
V16_B Replark 20 - continuous - 90° 224.85 97.5 V16_A $fully wrap$ 1.230 $concrete crushing$ (flexure) 367.92 223.2 V18_B $Replark 20 - continuous - 90°$ $fully wrap$ 1.230 $concrete crushing$ (flexure) 404.82 255.6 V14_A $side$ 0.7860 $CFRP$ debonding 241.12 111.8 V15_A $Replark 20 - continuous - 45°$ $side$ 0.7860 $CFRP$ debonding 241.12 111.8 V20_B $side$ 0.4200 $CFRP$ debonding 250.2 97.7 V21_B $cFK 200/2000 - strips - 90°$ $side$ 0.3891 $CFRP$ debonding 271.40 138.4 V22_A $CFK 200/2000 - strips - 45°$ $side$ 0.3891 $CFRP$ debonding 251.19 120.7	V15_B		"U" wrap	0.9498	CFRP debonding	276.74	143.1
V16_AImage: constraint of the constraint	V16_B	$\frac{1}{Replack 20 - continuous - 90^{\circ}}$				224.85	97.5
V18_BReplark 20 - continuous - 90°1.230concrete crushing (flexure)404.82255.6V14_A $intermatrix$ $side$ bonding0.7860CFRP debonding256.78125.6V15_AReplark 20 - continuous - 45° $side$ bonding0.7860CFRP debonding241.12111.8V20_B $side$ bonding $o.4200$ CFRP debonding285.82151.1V22_B $CFK 200/2000 - strips - 90°$ $side$ bonding $o.4200$ CFRP debonding225.0297.7V21_B $side$ bonding $side$ bonding $o.3891$ CFRP debonding251.19120.7	V16 A			1.230	concrete crushing (flexure)	367.92	223.2
V18_B Replark 20 - continuous - 90° 404.82 255.6 V14_A $iside$ 0.7860 CFRP debonding 256.78 125.6 V15_A Replark 20 - continuous - 45° $side$ 0.7860 CFRP debonding 241.12 111.8 V20_B $side$ 0.4200 CFRP debonding 285.82 151.1 V22_B $CFK 200/2000$ - strips - 90° $side$ 0.4200 CFRP debonding 225.02 97.7 V21_B $cFK 200/2000$ - strips - 45° $side$ 0.3891 CFRP debonding 271.40 138.4 V22_A $CFK 200/2000$ - strips - 45° $side$ 0.3891 CFRP debonding 251.19 120.7	_		fully wrap				
V14_A $side bonding$ 0.7860 CFRP debonding 256.78 125.6 V15_A $Replark 20 - continuous - 45^{\circ}$ $side bonding$ 0.7860 CFRP debonding 241.12 111.8 V20_B $side bonding$ 0.4200 CFRP debonding 285.82 151.1 V22_B $CFK 200/2000 - strips - 90^{\circ}$ $side bonding$ 0.4200 CFRP debonding 225.02 97.7 V21_B $CFK 200/2000 - strips - 90^{\circ}$ $side bonding$ 0.3891 CFRP debonding 271.40 138.4 V22_A $CFK 200/2000 - strips - 45^{\circ}$ $side bonding$ 0.3891 CFRP debonding 251.19 120.7	V18_B	8_B <i>Replark 20</i> – continuous – 90°				404.82	255.6
V15_A Replark 20 - continuous - 45° 0.7860 CFRP debonding V20_B side 0.4200 CFRP debonding V22_B CFK 200/2000 - strips - 90° side 0.4200 CFRP debonding V21_B Side 0.3891 CFRP debonding 271.40 138.4 V22_A CFK 200/2000 - strips - 45° 0.3891 CFRP debonding 251.19 120.7	V14_A		sido			256.78	125.6
V13_A Replark 20 - continuous - 45° 241.12 111.8 V20_B $iside$ $o.4200$ CFRP debonding 285.82 151.1 V22_B $CFK 200/2000 - strips - 90°$ $side$ $o.4200$ CFRP debonding 225.02 97.7 V21_B $side$ $side$ $o.3891$ CFRP debonding 271.40 138.4 V22_A $CFK 200/2000 - strips - 45°$ $side$ $o.3891$ CFRP debonding 251.19 120.7	V1E A		bonding	0.7860	CFRP debonding	241 12	111 0
V20_B side bonding 0.4200 CFRP debonding 285.82 151.1 V22_B CFK 200/2000 - strips - 90° 0.4200 CFRP debonding 225.02 97.7 V21_B side bonding 0.3891 CFRP debonding 271.40 138.4 V22_A CFK 200/2000 - strips - 45° bonding 0.3891 CFRP debonding 251.19 120.7	VIJ_A	<i>Replark 20</i> – continuous – 45°				241.12	111.0
V22_B bonding 0.4200 CFRP debonding V21_B cFK 200/2000 - strips - 90° side bonding 0.3891 CFRP debonding V22_A CFK 200/2000 - strips - 45° 0.3891 CFRP debonding	V20_B		side bonding	0.4200	CFRP debonding	285.82	151.1
V21_B Side bonding 0.3891 CFRP debonding 271.40 138.4 V22_A CFK 200/2000 - strips - 45° 251.19 120.7	V22 B					225.02	97.7
V21_B 271.40 138.4 V22_A CFK 200/2000 - strips - 45° 0.3891 CFRP debonding V22_A CFK 200/2000 - strips - 45° 120.7		CFK 200/2000 — strips — 90°					
V22_A CFK 200/2000 - strips - 45° bonding 251.19 120.7	V21_B		side	0 2001	CFRP debonding	271.40	138.4
	V22_A	CFK 200/2000 – strips – 45°	bonding	0.3891		251.19	120.7

Table 3 - Loads and modes of failure.

Experimental evidence observed in this study show, in this case, that the debonding starts at the compression side since the strip has enough anchorage at the beam soffit. Nevertheless *CFRP* rupture occurs near the tension side at the diagonal crack where the strip is severely stressed.

Finally the beams with total wrapping presented a failure mode associated exclusively to *CFRP* rupture. In this circumstance, by having enough anchorage length the strips have an enhanced behavior allowing for higher increases in load. This scheme also contributes for retarding the onset of a diagonal tension crack, because the partial confinement provided by the strips. This effect may be observed in figure 5.

Figure 5 - Detail of failure mode in beams V12_A, V18_A e V20_A.

The performance of the beams with strips bonded only to the sides, "L" type and "U" type was fairly similar. The average increase in strength was 85% when compared to the control beams. Nonetheless the "L" type uses a *CFRP* amount 15% larger than the "U" type and 39% larger than the scheme of strips bonded only to the sides.

4.2 Beams strengthened with strips at 45°

Due to its anisotropic nature it is recommended to orientate the *CFRP* fibers preferably along the principal direction of stress. In order to test this condition, a group of beams was strengthened with strips oriented at 45° . Two strengthening schemes were tested: strips bonded only to the sides and "L" type. The failure mode of the beams which received strips bonded only to the sides was characterized by debonding as well as for the strips oriented at 90°. On the other hand, the "L" type scheme presented a failure mode combining *CFRP* debonding near the compression side and *CFRP* rupture at the tension side by the diagonal crack origin.

The average increase in strength for the beams strengthened with strips bonded only to the sides and "L" type were, respectively, 70% and 105%. The higher performance of the "L" type scheme is justified because it provides larger anchorage lengths, despite using a *CFRP* amount 41% higher.

4.3 Beams with continuous strengthening

Besides the strips, a *CFRP* can be applied continuously. Despite representing higher material costs, in some circumstances it may provide a viable solution where the partial confinement of the cross section could be relevant.

These beams were strengthened along the entire shear span oriented at 90° in relation to the longitudinal axis. Three schemes were tested: *CFRP* bonded only to the sides, "U" type and total wrapping. Even though the largest amount of *CFRP* was applied in the total wrapping scheme, it provided an increase of 240% in the failure load.

Additionally this scheme modified the overall behavior of beams V16_A and V16_B. Opposed to a shear controlled failure mode, these beams presented a classical flexural failure with concrete crushing and buckling of the compression reinforcement, as it can be observed in figure 6.

Figure 6 - Detail of failure mode in beams V16_A e V18_B.

The behavior of the *CFRP* continuous sheet bonded to the sides only and "U" type was fairly similar, regardless the *CFRP* amount of the "U" type scheme being 21% larger. The increase in failure load fluctuated between 114% and 143% and their failure modes were identical combining *CFRP* debonding and concrete cover rupture.

The mechanism of force transfer between concrete and composite helps to explain the concrete cover rupture observed in all the beams with continuous strengthening. Since the strengthening surface is quite large (the whole shear span) all the concrete cover in this area is stressed. As load increases cracks may occur along the concrete cover forming a fracture plane. At the time of debonding due to significant changes in this stress distribution, the concrete cover is fails along with the *CFRP* sheet. This failure mode may be observed in figure 7.

Figure 7 - Detail of failure mode in beams V14_A e V15_A.

Beams with continuous strengthening oriented at 45° bonded only to the sides, showed similar behavior to those with continuous strengthened oriented at 90° . There was an increase of approximately 119% in the failure load. Failure mode was also characterized by debonding associated with concrete cover rupture.

The main feature of *CFRP* cured in situ system is its great application versatility. The use of *CFRP* sheets allows numerous strengthening schemes and anchorage solutions. Nevertheless, some of these schemes can be quite unpractical despite being structurally efficient.

This study, in particularly, showed that in spite of continuous sheet oriented at 45° have presented similar results to the other schemes, its application procedure is somewhat complex. Surface preparation is highly complex especially for the strengthening with strips. Besides that, the cutting of the sheets is also labor costly and it generates a lot of waste in material.

4.4 Beams with prefabricated laminates

The last group of beams was strengthened using prefabricated laminates. Beams were strengthened with strips oriented at 45° and 90° bonded only to the sides. The average increase in failure load fluctuated between 124% and 129% for 90° and 45° , respectively.

4.5 Distribution and orientation

A performance comparison among different distributions and orientations provides an indication on the efficiency of each tested scheme. For beams with composites bonded only to the sides (at 45° and 90°) it was observed a slight advantage for the fibers oriented at 90° despite needing a *CFRP* amount 8% higher.

Alternatively, "L" type at 45° scheme not only used a 6% less *CFRP* but also showed an average increase in failure load 10% higher than "L" type at 90°. This superiority can be explained in part by a longer anchorage length at the soffit duet to its orientation. While the anchorage length was 15 cm for the 90° strips, in the 45° strips it was 21 cm.

Another important aspect in assessing the efficiency of a strengthening scheme is optimization. It means that under certain conditions (loading, supports, geometry, resistance, etc.) it is possible to say that larger amount of *CFRP* would not necessarily mean higher failure loads. Experimental evidences of this study confirm this possibility.

Beams with continuous strengthening bonded to sides only and "U" type used a *CFRP* amount 87% higher than the beams strengthened with strips under the same conditions. Even though there was an increase in the amount of *CFRP* these beams presented failure loads only 38% higher than the control beams. Beams with fibers oriented at 45° presented even worse results where an increase in failure load of 38% demanded twice the amount of *CFRP*.

These results once more corroborate the idea of a breakeven point between the amount of *CFRP* and the increase in failure load, depending upon certain conditions inherent of each situation.

The use of prefabricated laminates was less versatile than the cured in situ sheets. Their main limitation regards the possible anchorage configurations. Notwithstanding presenting higher performance than the cured in situ sheets, their failure mode was characterized by debonding which prevents higher failure loads.

It means that unless additional anchorage devices are placed the use of prefabricated laminates might not represent a viable solution. It should not be forgotten that these two strengthening systems are entirely different and the choice between them must take into consideration technical and economical aspects.

Finally the prefabricated laminates present higher stiffness, which was also important in determining the failure mode. In spite of being controlled by debonding and concrete cover rupture, damage in these beams was quite severe.

5 Conclusions

Results of this stuffy confirmed the feasibility of the use of CFRP composite in the shear strengthening of R/C beams. Increases in failure load were impressive up to 255.6%. Besides that by changing fiber orientation, distribution and anchorage solution, numerous schemes may be derived.

Generally the behavior of the strengthened beams was basically controlled by two failure modes. Debonding was more frequent and it is associated to the force transfer mechanism between concrete and composite. Nevertheless for the beams with sufficient anchorage *CFRP* rupture becomes the dominant failure mode. In some cases a combination of both failure modes was observed.

The most impressive result was observed in the beams with continuous strengthening at 90° where the entire cross section was wrapped by the composite. In this case there was a dramatic change in the behavior of the beams. In opposition to a shear-controlled failure these beams presented a flexural controlled failure with concrete crushing and compression reinforcement buckling.

In the case of beams strengthened with strips oriented at 45° the "L" type anchorage solution was very effective in increasing failure load. Nonetheless this scheme can be somewhat complex and labor costly.

The application of larger amounts of *CFRP* not necessarily means similar increases in failure loads. This evidence corroborates the idea of a breakeven point between the amount of *CFRP* and increases in failure load.

Finally the use of prefabricated laminates allows significant increases in failure load. However because of its peculiarities the only anchorage solution is the bonding of the laminates to the sides of the beams. This limitation prevents higher increases in failure loads since the failure mode will be controlled by debonding. In some cases therefore, the versatility of cured in situ sheets may represent an advantage.

6 Acknowledgements

The results of this study are part of the first author's doctoral thesis. The authors would like to acknowledge the financial support provided by CNPq and the donation of materials provided by Master Builders Technologies do Brasil, Votorantim Cimentos S/A, Belgo-Mineira and Siderúrgica Gerdau S/A.

7 References

- BEBER, A. J. Avaliação do desempenho de vigas de concreto armado reforçadas com lâminas de fibra de carbono. Porto Alegre: CPGEC/UFRGS, 1999. 108 p. Dissertação de Mestrado em Engenharia.
- [2] NORRIS, T.; SAADATMANESH, H.; EHSANI, M. R. Shear and flexural strengthening of R/C beams with carbon fiber sheets. Journal of Structural Engineering, New York, ASCE. v.123, n.7, p.903-911, July 1997.
- [3] KARBHARI, V. M.; ZHAO, L. Use of Composites for 21st Century Civil Infrastructure. Computer Methods Applied Mech. Engineering. 2000. p. 433-454.
- [4] KHALIFA, A.; GOLD, W. J.; NANNI, A.; AZIZ, M. I. A. Contribution of Externally Bonded FRP to Shear Capacity of Flexural Members. ASCE-Journal of Composites for Construction, v. 2, n. 4, p. 195-203, Nov. 1998.
- [5] BEBER, A. J. Comportamento estrutural de vigas de concreto armado reforçadas com compósitos de fibra de carbono. Porto Alegre: PPGEC/UFRGS, 2003. 317 p. Tese de Doutorado em Engenharia.
- [6] CAROLIN, A. Strengthening of concrete structures with CFRP: shear strengthening and full-scale applications. Department of Civil and Mining Engineering – Division of Structural Engineering. Lulea University of Technology, 2001. Licentiate thesis.
- [7] SWAMY, R. N.; MUKHOPADHYAYA, P.; LYNSDALE, C. J. Strengthening for shear RC beams by external plate bonding. The Structural Engineer, London, v. 77, n.12, p. 19-30, Jun. 1999.
- The Structural Engineer, London, v. 77, n.12, p. 19-30, Jun. 1999.
 [8] MBT-Master Builders Technologies. MBraceTM Composite Strengthening System – Engineering Design Guidelines. 2nd edition, 1998.
- [9] MACHÁDO, A.P. Reforço de estruturas de concreto armado com fibras de carbono – características, dimensionamento e aplicação. São Paulo: Pini, 2002.
- [10] KEBLE, J.; SCHERER, J. Alternative structural strengthening with advanced composites. In: INTERNATIONAL STRUCTURAL FAULTS AND REPAIR, 8., 1999. London. Proceedings... Edinburgh: Engineering Technics Press, 1999. CD-ROM. MANUAL SBD