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Abstract  
The main objective of the present work is to develop a formulation to analyze the buckling of longitudinal bars in 
reinforced concrete columns taking into account the tie spacing, the diameter and arrangement of the ties in the cross 
section and the longitudinal bar diameter. For this purpose an analytical method for the evaluation of the buckling load of 
longitudinal bars is described, as a function of the constraint imposed by the axial or flexural stiffness of the stirrups. The 
longitudinal bar is considered as a column deforming according to thin beam theory. The tie action is described either by a 
set of discrete elastic supports or by a continuous elastic foundation. The theoretical analysis considers the column with 
one or more deformation modes, with some degree of nonlinearity. As a result of this study, rational criteria for spacing 
and sizing of transversal reinforcement are derived, allowing the study of different alternatives using a simple design 
chart. © 2005 IBRACON. All rights reserved. 

Keywords: Buckling; longitudinal and transverse reinforcement; columns; reinforced concrete. 

 

Resumo  
O presente trabalho apresenta um estudo sobre a flambagem das armaduras longitudinais em pilares de concreto armado 
submetidos a carregamento axial levando em conta o espaçamento entre estribos, o diâmetro e arranjo dos estribos na 
seção transversal e o diâmetro das armaduras longitudinais. Para este propósito um método analítico para a avaliação da 
flambagem da armadura longitudinal é proposto, considerando-se as barras longitudinais restringidas pela rigidez axial ou 
à flexão dos estribos. Admite-se que a armadura longitudinal funciona como uma coluna esbelta. Consideram-se duas 
formas de modelagem da atuação dos estribos: como apoios elásticos discretos e como base elástica contínua. O presente 
trabalho trata a coluna com um ou mais modos de deformação, incluindo certas não-linearidades. Como resultado deste 
estudo, apresenta-se uma proposta para dimensionamento racional dos estribos que permite estudar diferentes 
alternativas em um ábaco de utilização simples para projeto. © 2005 IBRACON. All rights reserved. 

Palavras-chave: Flambagem; armaduras longitudinais e transversais; pilares; concreto armado. 
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1 Introduction 
The study of the instability of the longitudinal reinforcement 
in concrete reinforced columns has attracted some attention 
of researchers in recent years. However, most of the 
studies are restricted to the analysis of a buckling wave 
occurring between two consecutive stirrups, and 
consequently the interaction of the ties with the buckling of 
the longitudinal reinforcement is disregarded.  

One of the first analytical studies about the instability of the 
longitudinal reinforcement in structures of reinforced 
concrete was made by Bresler & Gilbert [2]. They used 
criteria of elastic analysis to find relationships between the 
buckling of the reinforcement and parameters such as 
spacing and rigidity of the ties. A similar study was 
accomplished by Vallenas et al. [14] and Scribner [13], who 
considered that the maximum spacing of the ties for the 
calculation of the critical load of the column is such that the 
buckling wave length tends to be the same as the tie 
spacing, disregarding the overall buckling phenomenon. 

The experimental study of reinforced concrete columns, 
with the purpose of visualizing the behavior of the 
longitudinal reinforcement has attracted the attention of 
several researchers in the last forty years. We mention the 
works of Pfister [8], Vallenas et al. [14], Kaar & Corley [5], 
Sheikh & Uzumeri [11], Scott et al. [12] and Moehle & 
Cavanagh [6], which consider the buckling of longitudinal 
reinforcement in heavily confined concrete columns 
involving the stirrups. 

In face of the above state of affairs, a simple rational design 
methodology of the tie system appears to be necessary. A 
research has been developed by Buffoni [3], studying the 
buckling of longitudinal bars in reinforced concrete columns 
submitted to axial load, taking into account the tie spacing, 
the diameter and arrangement of the ties in the cross 
section and the longitudinal bar diameter. 

For this purpose an analytical method is presented, allowing 
for the evaluation of the buckling load as a function of the 
constraint imposed by the axial or flexural stiffness of the 
ties. Two particular models were studied. In the first, the 
longitudinal bar is considered as a column and the stirrups 
as discrete supports. In the second case, the longitudinal 
bar as is taken a column on elastic foundation, where the 
elastic foundation is provided by the ties.  

The case of splicing of the bars in the present formulation 
may be considered by taking the bar to be free in one of the 
extremities. The theoretical analysis considers the column 
with one or more deformation modes with some degree of 
nonlinearity. From the results of these analysis emerges a 
criterion for rational design, allowing for the choice of tie 
spacing, tie diameter and arrangement of the reinforcement 
in the cross section. 

The deduction of the mathematical models that will be 
approached is not the objective of this article, which focus 
on the practical applicability of such models directly, 
through comparisons with experimental results of the 
literature. The hypotheses and formulations of each model 
are discussed in more detail in the thesis by Buffoni [3]. 

2 Formulation 
The longitudinal bar is considered as a column where the 
ties can be represented schematically as intermediate 
elastic supports, whose stiffness K depends on the 
geometry of the arrangement and on the mechanical 
characteristics of the steel. The foundation stiffness is 
assumed constant. The model assumed for the 
determination of the critical load is shown in Figure 1, 
where L indicates the length of the bar, s is the tie spacing. 
The Fj are the forces corresponding to the elastic supports j, 
computed from where wj is the displacement of the generic 
support. 

j jF Kw= ⇒ j
j

F
w

K
=  (1) 

In the development to follow, the usual hypotheses of 
Euler-Bernoulli for plane bending of thin beams are 
adopted. The column and the load are in a plan of 
symmetry and the cross section remains plane and 
perpendicular to the axis, before and after the 
deformations. 

2.1 Strain energy and potential energy of the 
beam-column 

The elastic stiffness matrices and the geometric stiffness 
matrices of the column are obtained starting from the strain 
energies and potential energy, respectively. All the 
mathematical formulation is accomplished starting from the 
column of Euler, simply supported and submitted to purely 
axial load. The deformation mode is chosen to satisfy the 
boundary conditions of the model presented in the Figure 1. 

Fj

s
s L

x
y

K

 
Figure 1 - Mathematical model of longitudinal and 
transversal reinforcement. 

The strain energy is represented by the sum of the 
membrane strain energy, Um, originating from the axial 
deformation of the bar, with the strain energy Uf, due to 
bending of the bar, leading to the expression below. 
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In usual buckling problems, the strain due to bending is 
much more important than the axial strain and in the 
formulation of the problem the axial strain is disregarded. 
This hypothesis is adopted in the inextensional theory of 
beams presented in the works of Dym & Shames [4] and 
Bazant & Cedolin [1], where the bending strain energy of 
the beam is given by 
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In agreement with Dym & Shames [4], the approach shown 
in the expression (3) appears adequate to describe with 
accuracy the pos-critical equilibrium paths of the column, 
even for large transverse displacements. 

In the adopted model, the stirrups are considered as linear 
springs with strain energy given by 

( )
2

1

1
2

i n

i
i

U K w x is
=

=

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
∑  (4) 

where w is the value of the displacement in the points 
where stirrups exist and n is the number of stirrups 
involved in the model. 

If we assume that the discrete elastic supports can be 
substituted by an elastic foundation with distributed 
stiffness k=K/s, the term corresponding to the strain energy 
of the ties in expression (4) can be evaluated as an integral 
in the following way: 

( ) ( )2 2

1 0
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Li n

i

K w x is kw x dx
=

=

= ≅∑ ∫  (5) 

The potential energy of the external loads is given by the 
product of the load, P, and the shortening in the extremity 
of the column, ∆ , could be expressed as 

2 4
, ,

0

1 1
2 8

L

p p x xV P V P w w dx
⎛ ⎞

= ∆ ⇒ = − +⎜ ⎟
⎝ ⎠
∫  (6) 

where P is the axial load and the negative sign appears due 
the loss of potential energy. 

2.2 Non-dimensional variables 
• Discrete case 
In order to accomplish a parametric analysis, the following 
changes of variables will be made, using the following 
convenient parameters: 

 
x
L

ξ =  0 1ξ≤ ≤     d

w
w

L
=      

2PL
EI

Γ =      
3KL

EI
η =  (7) 

where ξ  is the non-dimensional coordinate, dw  is the non-

dimensional lateral displacement of the column, Γ  is the 

non-dimensional axial load and η  is the non-dimensional 
stiffness of the ties. 

• Column on elastic base 

The non-dimensional variables are the same ones 
considered in the expression (7), except for the stiffness 
parameter of the ties that is given by 

4kL
EI

η =  (8) 

2.3 Deformation mode 
The deformation mode of the column representing a bar is 
approximated by a function of the type: 

( ) ( )
1

n

j j
j

w x A y x
=

= ∑  (9) 

where n is the total number of degrees of freedom j, Aj are 
the modal amplitudes and the function are the modal 
functions. The functions yj(x) should satisfy the essential 
and when possible the natural boundary conditions of the 
column, with proper displacement restraints and moment 
zero in the extremities of the column, in order that the 
numerical solution converges better approximates the 
solution of the original problem. 

 

 

Figure 2 - Appearance of columns after tests (apud 
Sheikh & Usumeri [11]). 

Experimental observations show that the buckling of the 
longitudinal bar can occur in a sinusoidal shape, that can 
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involve several ties. The following function is taken to 
describe the deformation mode of the column: 

( ) ( )( )
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The above deformation mode combines functions that 
describe a symmetrical behavior with nonsymmetrical 
functions. The usual consideration of deformations just of 
the symmetrical type may lead to certain deviation, 
because it is verified in many cases that the buckling can 
involve non-symmetrical modes as displayed in the Figure 2 
taken from the work of Sheikh & Uzumeri [11]. In non-
dimensional form the deformation mode becomes: 
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2.4 Integration along the bar and determination 
of elastic stiffness matrices (Kf) and 
geometric stiffness matrices (Kg) 

The elastic stiffness matrices indicated by Kf are obtained 
from the strain energy expressed in Eq. (3); the stiffness 
matrices from the lateral supports, Km, are obtained from 
the corresponding strain energy, Eqs. (4) and (5), and the 
geometric stiffness matrices, Kg are obtained from the 
energy of the axial load expressed in  Eq. (6). In all cases 
we consider the field of displacements wi and wj for the 
given boundary conditions. 

• From strain energy 
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• From strain energy of the lateral supports 

- Discrete elastic supports 
1

,
0

mi j di d jK w w
ξ

ξ

η
=

=

= ∑  (13) 

- Continuous elastic foundation 
1

,
0

mi j di d jK w w dη ξ= ∫  (14) 

• From strain energy of the axial load 

( )
1

, , , , , , ,
0

1
4gi j d i d j d i d j d i d jK w w w w w w dξ ξ ξ ξ ξ ξ ξ= +∫  (15) 

2.5 Solution of the eigenproblem 
Taking into account the quadratic portion in the expressions 
(12) to (15), a linear eigenproblem is obtained, given by 
the following expression: 

( ) 0f m gK K K y+ − Γ =  (16) 

For a one-degree-of-freedom system the solution of 
equation (16) leads to the values of the critical load as 
follows: 

( )1
g f mK K K−Γ = +  (17) 

For a multi-degree-of-freedom system an eigenvalue 
problem is solved. The computational program for the 
calculation of the eigenvalues comes in Buffoni [3]. 

2.5.1. Critical load parameters 
Starting from the solution of the eigenproblem, is possible 
to find the parameters of critical load for the discrete and 
continuous cases.   

In the discrete case, is considered that the length of the bar 
involved in the buckling varies from one to sixteen tie 
spacing. The deformation mode is introduced, with one or 
more degrees of freedom as described in (11), in the 
expressions for the evaluation of the stiffness matrices. 
Hence the eigenproblem is solved for the non-dimensional 
critical load values. The values for these cases are in the 
work of Buffoni [3]. 

In the continuous case, considering the longitudinal bar as a 
column on elastic foundation, where the elastic substract is 
composed by the stirrups, the deformation mode described 
in (11) with an or more degrees of freedom are introduced 
in the quadratic portion of the expressions (12), (14) and 
(15). The stiffness matrices then obtained and the 
eigenproblem is solved leading to the critical load. Other 
details can be found in Buffoni [3]. The expression (18) 
presents the  critical load parameter for just one term in the 
modal expansion. 

( )
6 4 2 4

2 2

15 120 15 240

5 5 48

π π π η π η η
π π

− + + −
Γ =

−
 (18) 

2.6 Consideration of the splicing of 
reinforcement   

To take into account splicing of the bars in the present 
formulation, where there may be loss of continuity of 
displacements, it is suggested a crude model where the 
reinforcement is fixed in one of the extremities and free in 
the other as the model presented in the Figure 3. In that 
way, the steps accomplished for the column supported in 
the extremities can be repeated with the consideration of 
splicing, allowing for an estimate of the buckling behavior of 
the longitudinal bars in such a condition. 

2.7 Calculation of the stiffness non-dimensional 
parameter η 

The value of the stiffness non-dimensional parameter in the 
model depends on the stiffness of the ties, K, the modulus 
of elasticity of the longitudinal bar, E, the moment of inertia 
of the longitudinal bar, I, and the tie spacing s. 
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Figure 3 - Model of longitudinal splicing. 

2.8 Calculation of the stiffness of the ties, K 
The value of K is a function of the geometry, arrangement 
and mechanical characteristics of the tie. Several 
arrangements have been considered in this formulation. The 
Figure 4 presents some cases. A purely axial load with 
complete symmetry is assumed. The value of K is calculated 
with the simplified models of the Figure 5. 

b b
 

                       a)                               b) 

Figure 4 - Transverse reinforcement arrangements. 

In the model of the Figure 5.a the longitudinal bar is 
constrained by the flexural stiffness of the tie. In the 
Illustrations 5.b and 5.c the longitudinal bar is constrained 
to a greater extent by the axial stiffness of the tie. The 
Figure 5 also shows the force exerted by the longitudinal 
bar on the stirrup in the direction buckling can happen. 

For the model of the Figure 5.a, the longitudinal bar can be 
considered as imposing a concentrated load in the middle of 
the span of a fixed beam in the extremities and the 
expression for the stiffness of the tie is given by 

3

192 tEI
K

b
=  (19) 

For the model of the Figure 5.b the expression for the 
stiffness of the tie is 

tEA
K

b
=  (20) 

where E is the modulus of elasticity of the longitudinal bar, 
It is the moment of inertia of the tie and At is the area of 
the cross section of the tie. 

b

π/4

b

π/2
F

b F

F

 

           a)             b)       c) 

Figure 5 - Simplified models for stiffness calculation. 

It should be noticed that when the arrangement of the bars 
in the cross section is similar to the one in Figure 4.b, the 
bars located in the center of a leg of stirrups buckle first. 
We remark further that the stirrups can offer different 
contributions for the buckling strength of the longitudinal 
bars. The longitudinal bars located in the corners of the 
stirrups are restricted by extensional stiffness of the 
stirrups and the bars located along the legs of the stirrups 
are restricted mostly by the bending stiffness of the 
stirrups.  

The longitudinal modulus of elasticity longitudinal 
considered herein is the usual one; a reduced modulus of 
elasticity can be used if convenient. 

3 Curves for the calculation of spacing and 
diameter of ties 

Figure 6 presents the curve that relates the critical load 
parameter of the column, and the stirrups stiffness 
parameter, with the contributions of several modes for the 
buckling load. It is noticed that this graph presents a curve 
when the bar is fixed in the extremities and another curve 
when one of the extremities is free to simulate the presence 
of splicing of the bars.  

It is verified that starting from a high stiffness level, the 
buckling load increases almost in linear proportion with the 
increase of the stiffness of the stirrups. Based on this graph 
a method will be presented for the calculation of the 
spacing and diameter of the stirrups of the reinforced 
concrete columns. 

The curve of Figure 6 is valid for any type of arrangement 
of the reinforcement. According to the objective of the 
design, it is enough to introduce the respective values of Γ  
or η  for each case under consideration. 
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Figure 6 - Load parameter vs. stiffness parameter. 

For example, for the cross section of the Figure 4.b, 
introducing the value of the stiffness of the ties, K, from 
equation (19), the value of the non-dimensional stiffness 
parameter, η , expressed in (8), is obtained by 

4 4

3 4

192 t

l

L
b s

φ
η

φ
=  (21) 

On the other hand, introducing the moment of inertia of the 
longitudinal bar in the expression for the load parameter Γ : 

2

4

64

l

PL
Eπφ

Γ =  (22) 

Hence it is possible to adjust the values of the Γ  and η  of 
the expressions (21) and (22) or to create new parameters 
with the purpose of facilitating the calculations of the 
examples that will be presented. The non-dimensional 
variables Γ  and η  were modified in the following way: 

4 4

1 3 4192
t

l

L

b s

φηη
φ

= =  (23) 

2

1 464 l

PL

E

π

φ

Γ
Γ = =  (24) 

Therefore, the ordinate and abscissa of the graphs of the 
Figure 6 are altered multiplying the same ones for the 

factors, 
64
π

 and 
1

192
, respectively. In that way, it is 

obtained the graph of the Figure 7. Depending on the 
arrangement of the stirrups in the cross section, a different 
value is taken for the stiffness K and for the non-
dimensional stiffness parameter of the lateral supportsη . 
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Figure 7 - Load parameter vs. stiffness parameter. 

3.1 Considerations on the buckling load for 
rational design 

The buckling load should always be larger than the 
compressive yield load for a factor 1γ > , thereby assuring 

the full capacity y y sP f A=  in the initial design, as it is 

usually done. In the usual naïve design, one might attempt 
to optimize the design taking 1γ = , which is little advisable 
from the point of view of safety in the post-critical regime. 
The present work uses the value 1,2γ = . 

4 Design sequence with the use of the Γ x η 
curves  

A possible sequence of project with the use of the graphs 
xηΓ  can proceed as follows: 

a) the value of b comes from the geometry of the piece; 

b) the diameter of the longitudinal bar, lφ  is decided; 

c) a buckling load is looked for, cr yP Pγ= ⋅  and  Γ1 is 

obtained; 

d) with the value of Γ1 one enters in the ordinate of the 
graph 1 1xηΓ  and obtains the required 1η  in the 

abscissa. Since the values of b and lφ  are already 

available, the remaining design variables will be the tie 
spacing s and the tie diameter tφ , which are expected to 

be compatible with existing project norms. In case the 
spacing results too small, or diameter to big, is 
necessary to reduce b or to use supplemental stirrups to 
stiffen the section. 
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4.1 Calculation of the spacing and sizing of 
transversal reinforcement for the columns 
described in the work of Queiroga & Giongo 
[10] 

Queiroga & Giongo [10] studied columns of square section 
with the arrangement of the reinforcement in the cross 
section shown in the Figure 8. The columns P1, P4 and P6 
were selected for the accomplishment of the numeric tests 
herein. 

The calculated values for the tie diameter and tie spacing 
using the proposed criterion in the item 4 it is shown in 
Table 1. The complete procedure of calculation is described 
in Buffoni [3]. The steps for the column P1 are presented 
next. 

The properties of reinforcement of the column P1 are given: 

2502y
Nf

mm
=  12,5l mmφ =         

1200L mm=   139,9b mm=  

2210000 NE
mm

=  2125sA mm=   

150s mm=   45,46 10y y sP f A N= = ×    

The objective here is to calculate the tie diameter and tie 
spacing for 1,2γ =  considering the reinforcement without 
splicing. 

A required buckling load is taken with cr yP Pγ=  resulting in 

a value for 1Γ . 

65,48cr yP P kNγ= = ⇒  

2

1 4
cr

l

P L

Eφ
Γ = ⇒ 1 118,39 149,10ηΓ = ⇒ =  

(25) 

The value of 1η  found in the expression (25) is obtained by 

entering the value of 1Γ  in the ordinate of the graph 

presented in the Figure 7 and extracting 1η from the 

corresponding abscissa for 1Γ . Starting from the expression 

(23) one finds 

4 3 4
1

4
4,81t lb

s L

φ η φ
= =  (26) 

Table 1 presents the values obtained for the columns P4 
and P6 that were calculated in the same way that the 
column P1. In the line corresponding to the column P1, the 
value found for the diameter being considered a spacing 

150s mm=  is approximately 5,20t mmφ = . 

It is noticed that these values are found starting from the 
buckling mode that might involve several stirrups in a 
limiting state. The Table 1 presents the commercial values 
for the tie diameter. 

It is also verified that when the tie spacing diminishes the 
value of the tie diameter could be smaller. The Table 1.b 

presents the case where one of the extremities of the bar is 
free. In this case, the values found for the diameter of the 
stirrups are higher, because a certain value of the load 
parameter will require higher values of stiffness; 
consequently, higher values for the diameter of the stirrups 
are necessary. 

20 cm

20
 c

m

 
Figure 8 - Cross section and arrangement of 
reinforcement in the columns tested by Queiroga [9] 

Table 1 - Calculation of the tie diameter and tie spacing 
for the columns of Queiroga [9] starting from the 
proposed formulation. 

a) Longitudinal reinforcement fixed in the extremities 

Queiroga [9] Bar fixed in the extremities 

Transversal 
Reinforcement  

Column 
 

Transversal 
Reinforcement 

 
Γ1 

 
η1 s 

mm 
φt 

mm 
φtcom 
mm 

P1 6,3 /15cφ  18,4 149,1 150 5,20 6,3 

P4 6,3 /10cφ  18,4 149,1 100 4,68 5 
P6 6,3 /5cφ  18,4 149,1 50 3,94 5 
Note: for tie diameter, φt=6,3 mm, maximum spacing is 

328 mm. 
b) Free bar in one of the extremities 

Queiroga [9] 
Free bar in one of the 

Extremities 
Transversal 

Reinforcement  
Column 

 
Γ1 η1 

s 
mm 

φt 
mm 

φtcom 
mm 

P1 18,4 566,3 150 7,23 8 

P4 18,4 566,3 100 6,54 8 
P6 18,4 566,3 50 5,50 6,3 

Note: for tie diameter φt=6,3mm , maximum spacing is 
83mm. 

 

In agreement with NBR 6118/2003 the value of the 
diameter of the stirrups should be: 

5
4t

l

mm
φ

φ
⎧⎪≥ ⎨
⎪⎩

 (27) 
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The spacing should be such that in a collapse state the 
buckling would happen among two consecutive stirrups. 
NBR 6118/2003 presents the following limits: 

20
, dim

24 25,12 50l l

cm
s b menor ensão da seção

para CA para CAφ φ

⎧
⎪≤ ⎨
⎪ − −⎩

 (28) 

The first two limits of the expression (28) correspond to 
dispositions merely constructive and the last two are found 
starting from the condition, cr yf f= ; in other words, the tie 

spacing  should allow the buckling critical stress to be the 
same as the yield stress. For the bars of steel CA-25, 
starting from the formulas of the materials strength 
(diagram linear stress-strain), one obtains 

2 2

2 2
cr

cr
s s cr

P EI E
f

A s A
π π

λ
= = =  (29) 

where 2 2 2
cr s rλ = , s is the tie spacing e r is the radius of 

gyration given for 

s

I
r

A
=  (30) 

The value of the critical stress is 

2
250

217,4
1,15cr

Nf
mm

= =  (31) 

 

This leads to the following values for the tie spacing, whose 
average values are prescribed in the code: 

2210000
217,40

97,64 24,41
4

cr cr

l
l

r s

s

πλ λ

φ
φ

= =⇒ = ⇒

⇒ = =

 (32) 

NBR 6118/2003 includes the value 24 lφ  for the steel CA-25. 

In the case of the steel CA 50, the buckling critical tension 
is given by the formula of Tetmajer. 

( )480 1 0,0035cr crf λ= −  (33) 

Making 2400cr
Nf

mm
=  it is arrived 

47,6 47,6 12
4
l

cr cr ls r
φ

λ λ φ≅ ⇒ = = =  (34) 

It allows adopting 4
l

t
φφ <  since the tie spacing also 

respects the limitation 

( )2 1
90000 t l

ykf
φ φ  (35) 

where lφ  e tφ  are respectively the diameters of the 

longitudinal bar and of the stirrups, ykf  it is the yield stress 

of the longitudinal bar, in MPa. Those criteria suppose that 

both the tie and longitudinal bar are constituted by the 
same type of steel. 

The expression (35) guarantees, in the case of adoption of 
4t lφ φ< , the existence of same percentage of the 

volumetric ratio of stirrups that we would have with 
4t lφ φ=  and spacing 24 lφ  (CA 25) and 12 lφ  (CA 50). 

By considering the tie spacing 24 ls φ=  (CA 25) the 

volumetric percentage vρ   of the ties (length 2p) for 

volume of the column given: 

2

2
4 4 2

24 1536

l

l
v

l c c

p
p

A A

φπ
πφ

ρ
φ

⎛ ⎞
⎜ ⎟
⎝ ⎠= =  

(36) 

In case it is adopted 4t lφ φ< , for the maintenance of the 

same value of vρ , the tie spacing ,s  is given by 

2 2
,

,

2 2
, 384

4 1536
t tl

c c l

p p
s

s A A
πφ φπφ

φ
= =  (37) 

Following an identical reasoning, we would arrive to the 

limit 
2

192 t

l

φ
φ

 for the steel CA 50. It is noticed that the 

appearance of the value 384 in the expression (37) for the 
steel CA 25 corresponds to the term 90000 ykf  in the 

expression (35), in other words, 

90000 250 360≈  para CA 25 

90000 500 180≈  para CA 50 
(38) 

In agreement with the several design codes, these values 
consider the ultimate limit states, that the buckling of the 
longitudinal bar would happen mostly between stirrups, 
because is considered that the buckling length is the tie 
spacing.    

In that way, in agreement with NBR 6118/2003 the 
appropriate values for the spacing and diameter of the 
stirrups for the columns studied by Queiroga [9] are: 

12 150

5 5
l

t t

s s mm

mm

φ
φ φ
≤ ⇒ =⎧⎪

⎨
≥ ⇒ =⎪⎩

 (39) 

4.2 Applications to sections of great dimensions 
The proposed criterion is applied for reinforced concrete 
columns with rectangular cross section 25cm x 110cm, span 
free from 350cm, with compressive strength of concrete 
20MPa and of the steel of 500MPa. The longitudinal bars 
consist of 22 bars of 16mm, and the cover is of 3cm. The 
column is named P1 and some cases of variations in the 
arrangements of the reinforcement in the cross section are 
presented. 

• Case 1 

Consider the arrangement of the reinforcement in the cross 
section presented in Figure 9. 
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Figure 9 - Load parameter vs. stiffness parameter. 

  

b

P P P P P P P P P
a

 

Figure 10 - Simplified model for stiffness calculation in 
case 1. 

For the calculation of the stiffness K of the ties the model of 
the Figure 10 is adopted, where the leg of the stirrup is 
considered as a beam fixed in the ends. The flexibility of the 
stirrup associated to each bar can be obtained being applied 
a concentrated unitary load in each central point of the bar. 
It is noticed that this corresponds to admit that the onset of 
buckling occurs in the least restrained bar. The critical point 
is evaluated for the bar that counts with the smallest 
stiffness of the stirrup. For the model of the Figure 10 this 
happens in the center of the beam, and in this case the 
stiffness becomes 

3

38,4 tEI
K

b
=  (40) 

where the span free from bending is 
( )1100 2 30 5b = − + 16− 1014 mm= , assuming the 

diameter of the stirrup initially to be 5mm. Considering the 
stirrups as elastic foundation and substituting k = K/s in the 
parameter η  we arrive at 

4 4 44

3 3 4

38,4 38,4t t

l

EI L LkL
EI b sEI b s

φ
η

φ
= = = ⇒  

4 3 4 3 4
1

4 4

192
38,4 38,4

t l lb b
s L L
φ η φ η φ

= =  

(41) 

The objective is to calculate the tie diameter and tie spacing 
being considered the longitudinal bars without splicing. In 
that way, a buckling load is computed, cr yP Pγ= , leading to 

Γ1  and 1η . 

104,4cr yP P kNγ= = ⇒
2

1 4
cr

l

P L
Eφ

Γ = ⇒  

1 192,93 2802,08ηΓ = ⇒ =  

(42) 

Starting from the expression (23) it is had: 

4
36,38 10t

s
φ

= ×  (43) 

Some values were stipulated for the tie spacing in 
agreement with the limits imposed by NBR 6118/2003. The 
required diameters which prevent buckling of the 
longitudinal bar are shown in the Table 2. The values found 
for the tie diameter were high, because this model is quite 
flexible. 

Table 2 - Results for case 1. 

S (mm) 190 150 50 

tφ (mm) 33,18 31,28 23,77 

 

• Case 2 

The considered model is shown in the Figure 11 where there 
is a supplemental stirrup (admitted as rigid extensionally) in 
the middle of a stirrup leg. The model simplified for the 
calculation of the stiffness is in Figure 12. The located loads 
in the distance 2a or 3a of the left support in the Figure 12 
contribute with to smallest tie stiffness, and in this case the 
stiffness becomes 

3

250
3

tEI
K

b
=  (44) 

where the bending free span is 507b mm= . Substituting 
the expression (44) in the value of η  one obtains 

4 4 44

3 3 4

83,33 83,33t t

l

EI L LkL
EI b sEI b s

φ
η

φ
= = =  (45) 

and from expression (45)  

4 3 4 3 4
1

4 4

192
367,46

83,33 83,33
t l lb b
s L L
φ η φ η φ

= = =  (46) 

Starting from the expression (46) the values obtained are 
presented in Table 3. In relation to the case 1, this model is 
more rigid, however still quite flexible. In agreement with 
the results presented in the Table 3, the values found for 
the tie diameter are still high. Thus an arrangement is 
looked for that is rigid enough to lead to reasonable values 
for the tie diameter and tie spacing. 

Table 3 - Results for case 2. 

s (mm) 190 150 50 

tφ  (mm) 16,26 15,32 11,64 

 

  

110 cm

25
 c

m

 

Figure 11 - Case 2: Arrangement of reinforcement in 
cross section of column P1. 
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b

P P P P
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Figure 12 - Simplified model for stiffness calculation 
for case 2. 

• Case 3 

Figure 13 presents the arrangement of the reinforcement in 
the cross section. For the calculation of the tie stiffness K, 
the model adopted is presented in the Figure 14. The 
expression of the stiffness for the bar less restrained. i.e. 
more distant from the fixed support, is 

( )
3

3 3 2 3 2

6

21 192 128 108
tb EI

K
a b a b a b a

=
+ − −

 (47) 

where 507b mm=  and 46a mm= . The expression for the 
calculation of the design of the stirrups is shown in the 
expression (48), which is obtained starting from the 
expressions of η  and K presented in (8) and (47), 
respectively. 

( )4 3 3 2 3 2
4

1

3 4

32 21 192 128 108l
t

a b ba a b a

s b L

η φφ ⎡ ⎤+ − −⎣ ⎦=  (48) 

It is noticed from Table 4 that the values found for the 
diameter, despite still high, are much smaller than those for 
case 2. 

For all cases considered until the present, we considered 
γ=1,2 for the calculation of the buckling load. As the usual 
design admits the value of 0,1=γ , the calculations were 

repeated with such value and the results found is shown in 
the Table 4. 

Table 4 - Results for case 3. 

tφ  (mm)  
s (mm) 1,0γ =  1,2γ =  

190 9,21 9,79 
150 8,68 9,22 
50 6,59 7,01 
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Figure 13 - Case 3: Arrangement of reinforcement in 
cross section of column P1. 
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Figure 14 - Simplified model for calculation of stiffness 
in case 3. 

• Case 4 

The arrangement of the bars in the cross section is shown 
in the Figure 15. The models simplified for the calculation of 
the tie stiffness K are presented in Figure 16. Figure 16.a 
represents the first or last part of the cross section and 
Figure 16.b represents a region among supplemental 
stirrups. Is verified that the largest flexibility is for the bar 
of the center, and the value of the stiffness K is 

3

96 tEI
K

b
=  (49) 

 

where 184b mm= . The expression for the calculation of 
the design of the stirrups obtained starting from the 
expressions of η  and K presented in the expressions (8) 
and (49), respectively, is given by 

4 4 3
1

4

2t l b
s L
φ η φ

=  (50) 

The results are in the Tables 5 and 6. 

Table 5 – Results for case 4. 

tφ  (mm) 

  
s (mm) 

1,0γ =  1,2γ =  

190 6,90 7,34 
150 6,50 6,92 
50 4,94 5,25 

 

Table 6 – Results for case 4. 

s (mm)  

tφ  (mm) 
1,0γ =  1,2γ =  

5 53 41 
6,3 132 103 
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Figure 15 - Case 4: Arrangement of reinforcement in 
cross section of column P1. 
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Figure 16 - Simplified model for stiffness calculation in 
case 4. 

• Case 5 

The model of Figure 17 turned out to be the most favorable 
and economical in terms of design of the stirrups. The 
simplified model used for the calculation of K is shown in 
Figure 18, from which results the value of 338b mm= , 
with K given by 

( )3

6
2 3

tbEI
K

a b a
=

−
 (51) 

The expression for the design of the stirrups, from the 
expressions of η  and K presented in (8) and (51), 

respectively, it is given by 

( )4 34
1

4

32 2 3lt
a b a

s bL

η φφ −
=  (52) 

The results are in Table 7 for the values of 1,0γ =  and 

1,2γ = . It is verified through the calculations that if one 

defines the tie diameter as 6,3t mmφ = , the tie spacing is 

larger than the upper limit registered in NBR 6118/2003. 
Starting from this model a study was undertaken to verify 
the possibility to execute it with double spacing. 

The average stiffness takes the average of the values of the 
stiffness K with supplemental stirrups being used with the 
simplified model of the Figure 18, according to expression 
(51). The stiffness of the model of the Figure 17, without 
supplemental stirrups, is presented in the simplified model 
of the Figure 19.  

The value of the stiffness, K, for the model of the Figure 19, 
corresponding to one of the closest loads of the center is 
given for 

( )4 3 2 2 3 4

54

3 9 18 81
tbEI

K
b b a a b a b a

=
+ − + −

 (53) 

The value of 1014b mm=  and the results being considered 
the medium stiffness of the elastic base for the 
consideration of double spacing, with the values of 1,0γ =  

and 1,2γ =  presented in Table 8. 

Table 7 - Results for case 5.  

Tie diameters 

tφ  (mm)  
s (mm) γ=1,0 γ=1,2 

190 5,48 5,83 
150 5,16 5,49 
50 3,92 4,17 

Tie spacing 

tφ  (mm) s (mm) 

 γ=1,0 γ=1,2 
5 131 103 

6,3 331 259 
 

Table 8 - Results for case 5, with alternate spacing. 

a) Tie diameters 

tφ  (mm)  
s (mm) γ=1,0 γ=1,2 

190 6,51 6,93 
150 6,14 6,53 
50 4,96 4,96 

b) Tie spacing 

s (mm) 
tφ  (mm) 

γ=1,0 γ=1,2 

5 66 51 
6,3 166 129 
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Figure 17 - Case 5: Arrangement of reinforcement in 
cross section of column P1. 
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Figure 18 - Simplified model for calculation of stiffness 
in case 5. 
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Figure 19 - Simplified model for calculation of stiffness 
in case 5, no supplementary stirrups. 
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5 Conclusions 
The present work studied the buckling of the longitudinal 
reinforcement in reinforced concrete columns submitted to 
axial load, taking into account the tie spacing, the diameter 
and arrangement of the stirrups in the cross, section and 
the diameter of the longitudinal bars.   

Graphs were presented that relate the critical load 
parameter of the longitudinal bar with the tie stiffness 
parameter. It is found that the value of the load parameter, 
for high values of the tie stiffness parameter, varies almost 
linearly. This suggests the adoption of simplified 
expressions for design rules. However, the procedure 
adopted in this work seems sufficiently simple for routine 
use. 

Starting from the graphs that relate the load parameter of 
the longitudinal bar with the tie stiffness parameter, a 
sequence is proposed for sizing and positioning stirrups, 
characterizing a rational design of the stirrups in reinforced 
concrete columns. 

The examples show that the result of such a procedure can 
become compatible with the existent results in current 
design codes. 

The values obtained in the calculations for tie spacing and 
tie diameter consider general buckling that may involve 
several stirrups.   

It has been shown, through examples, that the procedure 
adopted in this work allows for the necessary stiffness to be 
reached (that is, critical load above the compressive limit 
load limit of the longitudinal bar), with use of several design 
variables: tie spacing, tie diameter, diameter of the 
longitudinal bar, use of supplemental stirrups (in each 
section or alternately), and relocation of the bars of the 
longitudinal bar. The last two variables correspond to 
variations in the free span of the supporting stirrups. 
Several transversal reinforcement arrangements were 
discussed that supply larger stiffness and confinement. 
Such arrangements are more usual in projects looking for 
larger ductility, such as under seismic actions.  

The Brazilian Code NBR 6118/2003 recommendations, as 
well as others, are intended to assure that buckling does 
not occur between two consecutive stirrups. However, the 
present study suggests that such restriction is over-
conservative and may lead to unnecessarily high values of 
the load parameterΓ. In some instances, the approach used 
herein may require a denser reinforcement. Hence, a 
rational procedure such as the one proposed here may 
prove safer and more economical. 

The case study presented in Figure 17 showed that the 
concentration of the longitudinal bars close to the corners 
causes an increase in the tie stiffness parameter, since 
there is a reduction of the bending span of the stirrups. 
Once more, the number of supplemental stirrups can be 
reduced in a rationally justifiable manner. 

An effective stiffness can be taken for the stirrup as the 
average among the calculated stiffness when are used 
alternating supplemental stirrups to ease the placement of 
concrete. 

In summary, a rational procedure for the design of 
transverse reinforcement has been introduced, with use of 
considerations related to the buckling of the longitudinal 
bars. A larger reinforcement requirement may be 
compensated by better conditions of execution of concrete 
columns, due to the justified reduction of supplemental 
stirrups. These and other aspects related to the function of 
the transverse reinforcement should be considered in the 
future design codes. 
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