

56° Congresso Brasileiro do Concreto

Management of aging Infrastructure Challenges for Owners and Operators

Jürgen Krieger, Federal Highway Research Institute (BASt), Bergisch Gladbach, Germany

Federal Highway Research Institute, Division Bridges and Structural Engineering

Outline

- Introduction
- Challenges
- Management
 - Inventory
 - Inspection
 - Load bearing capacity
 - Management System
- Extreme Weather
- Large Accidents and Explosions
- Innovation
- Summary and Conclusions

Reliable Road Infrastructure is a necessary Condition for sustainable Mobility and contributes to economic Growth and Quality of Life.

Transport System

Germany - Changes in Traffic Demand

1950

1975

1985 until today

- Traffic increase
- Changing requirements for road infrastructure

Federal Roads in Germany

Roads:	644.358 km
Freeways:	12.531 km
Highways:	40.711 km
Federal Roads Bridges: Tunnels:	40.000 240

Outline

- Introduction
- Challenges
- Management
 - Inventory
 - Inspection
 - Load bearing capacity
 - Management System
- Extreme Weather
- Large Accidents and Explosions
- Innovation
- Summary and Conclusions

Traffic Prognosis for Germany

Quelle: www.bmvi.de

Germany - Traffic Prognosis 2030 (Freight Traffic)

Quelle: www.bmvi.de

Bridges on Federal Roads

Bridges on Federal Roads – Age Distribution

Bridges on Federal Roads – Bridges Classes

Bridges on Federal Roads - Condition Rating

Possible Deficits of Bridges

Sachstand Verstärkungsverfahren – Verstärken von Betonbrücken im Bestand, Bericht der Bundesanstalt für Straßenwesen, Heft B 75

Challenges for Owners and Operators

- Traffic demand traffic prognosis
- Load bearing capacity and condition
- Maintenance under traffic
- Limited resources
- Extreme weather (Climate Change)
- Large accidents, criminal and/or terrorist activities

		1	1		
distant.	-	-	+	-	-
			1	1	
		1			

Owners and Operators have to make sure that their assets are available, durable, secure and safe!

Outline

- Introduction
- > Challenges

Management

- Inventory
- Inspection
- Load bearing capacity
- Management System
- Extreme Weather
- Large Accidents and Explosions
- Innovation
- Summary and Conclusions

Bridge Management – Standards/Guidelines

Outline

- Introduction
- > Challenges
- Management
 - Inventory
 - Inspection
 - Load bearing capacity
 - Management System
- Extreme Weather
- Large Accidents and Explosions
- Innovation
- Summary and Conclusions

Location - unique Identifier

Location - unique Identifier

SIB-BAUWERKE Verwaltungsprogramm V 1.6-R3.3 ORACLE					
bæst Referat "Grundsatzfragen der Bauwerkserhaltung" SIB-BAUWERKE					
Bauwerksnummer 5136528 - Interne Dwnr. A 4 St	ructure ID				
Bauwerksname BRÜCKE ÜBER DIE A 4 BEI STADTRODA					
Nächstgelegener Ort BEI STADTRODA					
Amt Autobahnamt					
Interner Sortierschlüssel 101490000		 Tabelle			
Gemarkung Stadtroda, Stadt		Suchen			
Bauwerkslängen Brücke 54,00 m		Neu			
Bemerkungen ***	*	Neu			
		Löschen			
	Letzte Bearbeitung :	Ändern			
	07.01.2002 10:24:02	Kopieren			
Bearbeiter :					
BERGER					
	Anzahl Teilbauwerke 1				
A A A A A A A A A A A A A A A A A A A	Bilder	Teil-			
Zeichnungen					
Dokumente					
	Datenaktion	Opersicht			

Bridge Inventory

SIB-BAUWERKE Verwaltungsprogram	m V 1.6-R3.3	ORACLE					
Referat "Grundsatz	fragen ung''	SIB-BA	UV	VERKE			Brücke
E12	<u> </u>	A latence During	_	4 17011			
Bauwerksnummer 313	6528	U Interne Bwnr.	A	4 17810			
Querschnitt Überbau Zweiste	egiger Vollqu	ierschnitt			G	eometry	/
Querschnitt HTragwerk Mit Que	erschnitt des	: Überbaus identisch			<u> </u>	comeay	
Bauverfahren Überbau Auf Tra	ggerüst her	gestellt					
Gesamtlänge	54,00 m	Konstruktionshöhe m	i <mark>in.</mark>	0,25 m	BW-Wir	nkel 98,7 g	jon .
Breite	11,75 m	Konstruktionshöhe ma	ax.	1,40 m	Winkelricht	ung Links	
Brückenfläche	635 m2	Längsneigung ma	ax.	3,2 <mark>%</mark> Lic	hte Weite bei Einf	feld 0,00	m Ändern
Anzahl der Überbauten 1 S	Stk	Querneigung ma	ax.	2,5%	Lichte Ho	öhe 4,73	m
Zwischenrm. Überbauten 0,0	0 m	Überschüttungshöhe ma	ax.	0,00 m			
Gesamtbreite	12,25 m	Überschüttungshöhe m	iin.	0,00 m	Anzahl der Fel	der 2 Stl	k l
Kon. Maßn. für n. Verst. Nein							
Krümmung Nicht gekrümmt (R > 1500 m), nicht aufgeweitet							
Bemerkungen zum Baugr Gründungssohle: 230,90 - 228,17 m über NN							
Bemerkungen ***							
Letzte Bearbeitung 07.01.2002 10:45:50 Bearbeiter BERGER							
	Brü	ckenseile, -kabel		Gestalt	ung		Zuruck
Stat. System / Tragfähigkeit	Fahrbah	nübergangskonstrukt.		Leitungen			BST Beton
		Abdichtungen	Verfüllungen Risse		Felder /	BST Stahl	
Gründungen		Kappen	Betonersatzsysteme		Stützungen	Holz, Stein, Kunststoff	
Vorspannungen	Sch	utzeinrichtungen	OS-System Beton			BST Verbur	
Erd- und Felsanker		Ausstattungen		RHDB (Dünr	nbeläge)		

Layout of Inventory Database

J. Krieger, 56° Congresso Brasileiro do Concreto, Natal October 7-10, 2014

Keywords and Coding

Brücke		020071000000000
balkenartige und plattenartige Tragwerke B	ridge	020071100000000
Plattenbrücke	Beam-/Slab Structure	020071110000000
Balkenbrücke / Mittelträger / Trapezplatte	Slab bridge Roam bridge	020071120000000
Plattenbalken / Trägerrost	Rib slab bridge	020071130000000
Hohlkastenbrücke	Box girder bridge	► 020071140000000
Balken/Platten-Mischsystem	Frame structure	020071150000000
rahmenartiges Tragwerk	open Frame	020071200000000
offener Rahmen	closed Frame	020071210000000
geschlossener Rahmen	special Frame structure	020071220000000
spezielle Rahmenkonstruktion		020071230000000
Trog-Haube-Konstruktion		020071231000000
Schrägstielrahmen		020071232000000
Rahmen-Mischsystem		020071240000000
bogenartiges Tragwerk / Gewölbe		020071300000000
Bogen mit aufgeständerter Fahrbahn		020071310000000
Bogen mit abgehängter Fahrbahn		020071320000000
Bogenscheiben		020071330000000
Gewölbe/Bogen		020071340000000
Gewölbe/Bogen ohne Aufbeton		020071341000000
Gewölbe/Bogen mit Aufbeton im Verbund		020071342000000
Gewölbe/Bogen mit Aufbeton ohne Verbund		020071343000000
Gewölbe/Bogen mit Lastverteilungsplatte		020071344000000
Rohr ohne Ummantelung		020071345000000
Rohr mit Ummantelung		020071346000000
Bogenmischsystem		020071350000000

Photos and Drawings

Outline

- Introduction
- > Challenges

Management

- Inventory
- Inspection
- Load bearing capacity
- Management System
- Extreme Weather
- Large Accidents and Explosions
- Innovation
- Summary and Conclusions

Bridge Inspection – DIN 1076

Bridge Inspection – DIN 1076

Major Inspection

Hands on visual inspection of all parts of a structure by engineers, every 6 years. Damage and condition assessment according to RI-EBW-PRÜF. First major inspection before the structure is opened to traffic, second major inspection before the guarantee period

Minor Inspection

Hands on visual inspection by engineers every 3 years after major inspection, verification of major inspection results

Ad-hoc Inspection

Engineers obtain in-depth view of particular damages or deterioration process (accidents, flooding, ...)

Inspection in accordance with regulatory requirements

Machinery and electrical equipment forming part of highway structures, especially moveable viewing facilities and gantries, are inspected with other regulations and standards.

Superficial inspection

Maintenance personal, no special knowledge on highway structures, detection of major visible faults, checking the functionality quarterly basis (visual), annual inspection (all accessible parts)

Routine Monitoring

Ongoing observation of all highway structures with respect to their **safety** as part of the superficial inspection of the highway

Inspection Equipment

Tape measure

Crack width measurement

J. Krieger, 56° Congresso Brasileiro do Concreto, Natal October 7-10, 2014

Inspection

Inspection

J. Krieger, 56° Congresso Brasileiro do Concreto, Natal October 7-10, 2014

Inspection

Inspection

Rating of Damages

J. Krieger, 56° Congresso Brasileiro do Concreto, Natal October 7-10, 2014

Rating of Damages

SIB-BAUWERKE Verwaltungsprogramm V 1.6-R3.3 ORACLE					_ D ×				
bast Referat "Grundsatzfra location, description, rating Schadensberger Schadensb									
Bauwerksnummer 5136528 0 Interne Bwnr. A 4 17810 [1] Brücke · [2] Beläge · Fahrbahn · [3] bituminuse Baustoffe · Walzasphalt · [4] quer · > = 1 mm · 4 mm · [5] durchgehend · [6] ▲ 1 Stück · [9] hinten · [12] S=1, V=0, D=2 · bei ca. 40 cm hinter Querfuge hinten; beginnende Setzung im Hinterfüllungsbereich (bis 1 cm) · Bild: GERISSENER BELAG BEI HINTERER QUERFUGE JPG Standsicherheit des Bauteils ist beeinträchtigt, kein Einfluß auf Standsicherheit des Bauwerks. Schadensbeseitigung im Rahmen ▲									
BELÄGE Fahrbahn, Setzung der Fahrbahn im Hinterfüllungsbereich (<= 2 cm) Fahrbahn, Setzung der Fahrbahn im Hinterfüllungsbereich (> 2 cm) Fahrbahn, Setzung der Fahrbahn im Hinterfüllungsbereich (> 2 cm)	S V D 0 1 0 0 2 1 0 1 0	S Stand- sicherhe	V Verkehrs- tsicherheit	D Dauer- thaftigkeit					
, mit Beschilderung Fahrbahn, Entwässerung nicht gewährleistet, Aquaplaninggefahr Fahrbahn, Spurrinnen / Verdrückungen, Tiefe < 1 cm Fahrbahn, Spurrinnen / Verdrückungen, Tiefe 1 -3 cm	0 2 0 0 1 0 0 2 0	0	0	0					
Fahrbahn, Spurrinnen / Verdrückungen, Tiefe 1 -3 cm, mit Beschilderung Fahrbahn, Spurrinnen / Verdrückungen, Tiefe > 3 cm Fahrbahn, Spurrinnen / Verdrückungen, Tiefe > 3 cm, mit	010 031 011	1	1	1	Speichern				
Beschilderung Fahrbahn, Blasen, Höhe <= 2 cm Fahrbahn, Blasen, Höhe 2 - 5 cm Fahrbahn, Blasen, Höhe von 2 - 5 cm, mit Beschilderung	010 020 010	2	2	2	Zurück				
Fanrbann, Blasen Höhe > 5 cm Fahrbahn, Blasen Höhe > 5 cm, mit Beschilderung Fahrbahn, Blasen in Tunnel- und Trogstrecken (V = 1 -3, siehe vor)		3	3	3	Bei Einfacher Prüfung zu kontrollieren				
Fahrbahn, Ausbrüche, Tiefe <= 2 cm Fahrbahn, Ausbrüche, Tiefe 2 - 5 cm Fahrbahn, Ausbrüche, Tiefe von 2 - 5 cm, mit Beschilderung Fahrbahn, Ausbrüche Tiefe > 5 cm	010 020 010 031 v	4	4	4	NEIN				

Damage Assessment – Stability

	Damage Assessment "Structural Stability"
Assessment	Description description
0	The defect/damage has no effect on the structural stability of the structural element/structure.
off aan bi neveu o aagamabi e	The defect/damage negatively affects the structural stability of the structural element; however, it has no effect on the structural stability of the structure.
	With respect to the as-planned utilization, individually occurring, small deviations in the condition of the structural element, the quality of the construction material or the element's dimensions are still clearly within the scope of the admissible tolerances.
can, in the long is damages or	Repairs to be carried out within the scope of regular maintenance.
2	The defect/damage negatively affects the structural stability of the structural element; however, it has little effect on the structural stability of the structure.
	The deviations in the condition of the structural element, the quality of the construction material or regarding the dimensions or the as-planned stresses resulting from the utilization of the structure are still within the scope of the permissible tolerances . In individual cases, the admissible tolerances of the structural element may be exceeded.
	Repairs must be undertaken within the medium term.
3 milupen allem	The defect/damage does affect the structural stability of the structural element negatively. the deviations with respect to the condition of the structural element, the quality of the construction material or regarding the dimensions or the as-planned stresses resulting from the utilization of the structure exceed the permissible tolerances.
	The required restrictions on the use are not in place or are ineffective.
	The damage must be repaired at short notice. Restrictions regarding utilization must be put in place immediately.
4	The structural stability of the structural element and the structure no longer exists.
	Immediate measures must be taken during the inspection of the structure. Restrictions regarding the utilization must be put into place immediately. The repair or renovation must be initiated.

Examples for Damages

Steel corrosion of the bridge cap (deicing salt, sea water environment)

Corrosion due to less concrete cover

Determination of carbonization depth

Concrete flaking

Link to NDT

NDT Methods 65 X 1,9 **B**3 >-200 >-250 >-300 >-350 >-400 >-450 <=-450 (mVCSE)

NDT Methods

J. Krieger, 56° Congresso Brasileiro do Concreto, Natal October 7-10, 2014

25

tendons

Additional Inspections

Bridge Condition according to DIN 1076

- 1,0 1,7 the structural element is in a very good / good condition. Intervention not necessary.
- 1,8 2,4 the structural element is in an acceptable condition. Intervention should be planned in time.
- 2,5 2,9 the structural element is in a bad condition. Measures should be planned in the near future.
- 3,0 3,4 the structural element is in a bad condition. Measures should be planned fast.
- \geq 3,5 the structural element is in a very bad condition. Measures have to be planned immediately.

Inspection Report

								Da	ade vera de	201.20	מו, ש	udiblatt Suite 1
			Prí	ifbe	ric	ht :	1999) I	I			
					0 845 D))	A 1076						
Bauwa Teilbeu Kreis	lationa wedenaam	Tabrick Tabrick Stadtverl	e Friedri e Priedri wind Sec	chettel chettel rbruecks	31							
Bauwe Tragial	icaart ogkeit	Plattenba 60/50 nam	kanbrü b DEN 1	:ke, Trilg 072	arroatio	riicilas						
Baujah	r	1969										
Straßen	in Barwe	desbereich								1		
	milioni.	ndiposis.	terinit.	- Mag	3255	84	Mare-1a Mare			1980	ан бн	
Δ£ 1 101	00000	00000		373	117	ши		<u> </u>	81	1	11	5397 P
				T						Contraction of the local division of the loc		
				A STATE			-					

Prüfinericht 1999 H Teilbauwerk: 6619530 1 (465) Straffe: A S Dackwar 2011.2011, ichsisch schwing Seite 1

Scheden & exchraibung

Überben

[1] Balkin, Vollguersbuit, als Stick, Quaerina, 1-tai Fed 39,3 a von Federating Brits, 3=0, 7 =0, 11=L EP [7] Balken, Volleguerenhnit, Botan, ein Stildt, abgeplant, 1-tes Feld, 14 m won Poldaniang, Mitta, unten, Instandeetsung sebudhaft, 5-0, 9-0, D-1 EP [3] Balken, Vollgmerschnit, Beim, ein Stick, abgeplatzt, 2-tes Feld, 11 er wen Feldandung, Heike, S=0, 7=0, D=3 EP [4] Balken, Voll quereshnit, Boton, sin Stilok, obgratiant, 2-tes Fald, hinten, linka S-0, V-0, D-1 EP [5] Balken, Vollgenrechnik, Belm, eine Stelle, abgeplatzt, 3-tes Feld, 12 m wen Feldenfung, Heika, unden. S=0, 7 =0, 13=3 EP

 $\label{eq:states} \begin{array}{l} \textbf{FLANDCH BETONABPLATZUND} \\ [b] Bolien, Vollgewindnit, Boton, inso Stilla,$ displitint 4.4 for Fild, 32 an rear Paldenderg soulta, $S-0, V-0, D-1 EP \\ [c] Bolien, Vollgewindnit, eine Bielle, Querciese$ Riedernin (J. - < Q. 2 an, J-bes Fild, 23 an rearFiddmine, $B-0, V-0, D-1 EP \\ [c] Bolien, Vollgewindnit, eine Bielle, Querciese$ Riedernin (J. - < Q. 2 an, J-bes Fild, 44 an rearFiddmine, $S-0, V-0, D-1 EP \\ \end{tabular}$

AUSKRADUND ELTONAEPLATZONO 1 [10] Balker, Vallopserschnitt, Beton, eine Stelle, abguptoint, 5-too Fold, 44 m won Foldenfang rookin, 3-0, V-0, D-2 BP [1] Balkan, Volloverschnikt, eine Bielle, Schrämiser Risebraile 0,2 - < 0,4 mm, 3 m, 5-les Fald, hinten, S=0, V=0, D=1 EP [12] Balker, Vallopserschnitt, Beten, versionelt, abgaptoint, 6-tes Feld, hinton, 9-0, V-0, D-2 BP [13] Balkan, Volloperschuill, Beton, vaosinzell, abgaptaizi, 6-ize Feld, 28 m von Feldenfeng linke, 3-0. Y-0. D-Z EP [14] Balker, Volloperschnitt, eine Stelle, Schutignisse Risebraite 0,2 - < 0,4 mm, S m, 7-tes Feld, vorae, 3-0, V-0, D-1 BP [15] Balker, Vallquerscheitt, das Stells, Habistelle, 7-tes7eld, hinter, 3-0, V-0, D-1 EP [16] Baltan, Valleyanstmitt, Beton, size Stalls, abgapiatat, 8-tes Feld, vome, rachte, 3-0, V-0, D-2 BP [17] Balker, Valleparadwill, das Stells, Schrögrige Rischretie (1, 1 - < 0, 2 mm, 2 m, 2-tes Fild, vorme, 3=0, V=0, D=1 BP

Outline

- Introduction
- > Challenges

Management

- Inventory
- Inspection
- Load bearing capacity
- Management System
- Extreme Weather
- Large Accidents and Explosions
- Innovation
- Summary and Conclusions

Load bearing Capacity of aging Bridges

Traffic Simulation

Ţ

Risk Analysis – Standards and Guidelines

	1950	1955	1960	1965	1970		1975	1980	1985	1990	1995	2000
Lastannahmen Straßenbrücken	DIN 1072	DIN DIN 1072/06.1952 1072 (BK60; BK 30)			DIN 1072/11.1 (BK60; BK 30			967	DIN 1072/12.1985 (BK60/30; BK30/30)			985 /30)
ΔT	kein ∆T						ΔT=5K (ΔT=2,5K Bauzust.)		ΔT=7K (ΔT=10K Bauzust.)			
Beton- und Stahlbetonbau	DIN 1045/09.1929; 04.1932; 05.1937; 1943; 11 .95			.959	DIN 1045/01.1972		DIN 1045/12.1	78	78 DIN 1045/07.1988		88	
Berechnungsgrundlagen für massive Brücken	DIN 1075/08.1931; 11.1931; 05.1938; 08.1951; 4/1			ARS24/Dez. 4/1955 Richtlinier 08/73			DIN 1075/04.1981					
					Schadensfall Prizenalle			zenalle				
Spannbeton Berechnung und Ausführung		DIN 42	27/10.195	3	3 DIN 4227 02.1966 +11.1969	/ F 42 06	611i 01N 82 27/ 43 5.73	DIN 422 12.19	2 -1/ 9	DIN 42	27-1/ 0	7.1988
Mindestbewehrung		nur konstr	uktive Bewehn	ung	Mindestbewehrung: erh z.B.Ø8, a=25/33cm mi			hte Mindestb p_=0,25% PL+ p_=1% HK	e vehrun F	g:		
Zusätzliche Regeln							ZTV- К76	ZTV-K8		ZTV-K88		ZTV-K96
Querkraft	bis 19	67 (gemäß Hes	s. LSV+RWTH)		1968	- 1985 (gemäß Hess	.SV+RWTH)	198	6 - 2003 (ge	m. Hess. L	SV+RWTH)
Spannstahl (SpRK)		vergüteter S Typ" b	8t 145/160 "alte is ca. 1965	er ve Ty	jüteter St : Von 1965	145/160 bis 1978	'neuer 3					
					ennigsd	orf St	140/160	bis Anfang	0er.	Jahre		
Vorschlag für Reihung		bis 1967			ł	ois 1979		bis 1985		bis	2003	

Risk Analysis

$Z = (f_1^* Z_V + f_2^* Z_{ZN(UB)} + f_3^* Z_{DT} + f_4^* Z_{KF} + f_5^* Z_Q + f_6^* Z_{SpRK} + f_7^* Z_{ZN(TBw)}) * 7$

Z _V	Traffic $(f_1=0,45)$
Z _{ZN(ÜB)}	Condition of superstructure $(f_2=0,10)$
Z _{DT}	" DT "-Consideration (f ₃ =0,10)
Z _{KF}	"Coupling Joints" (f ₄ =0,10)
ZQ	" Shear Force " (f ₅ =0,10)
Z _{SpRK}	"Stress Corrosion" (f ₆ =0,10)
Z _{ZN(TBw)}	Condition (f ₇ =0,05)
f ₁ ,,f ₇	Weighting factors

Risk Analysis

Brücken im	icken im Zuge von Bundesautobahnen Vordringlich zu untersuchende Brücken				en	Stand: Februar 2010				
LFD. NR.	BL	STRECKE	ID_NR	BAUWERKSNAME	ORT	LÄNGE [m]	BAUJAHR	HAUPTBAUSTOFF		
0001	BB	A 10	3443507 1	Brücke im Zuge der A 10 über DB und K 6303 Überbau 1, link	BREDOW	40,00	1978	Stahlverbund		
0002	BB /	A 10	3443507 2	Brücke im Zuge der A 10 über DB und K 6303 Überbau 2, rec	BREDOW	40,00	1978	Stahlverbund		
0003	BB /	A 10	3244500 2	Brücke im Zuge der A10 über die A24	Großziethen	65,20	1979	Spannbeton		
0004	BB /	A 10	3244500 1	Brücke im Zuge der A10 über die A24	Großziethen	65,20	1979	Spannbeton		
0005	BB /	A 111	3245502 0	Brücke im Zuge der A 111 über die A 10	VELTEN	64,20	1982	Spannbeton		
0006	BB /	A 114	3346514 1	Brücke im Zuge der A 114 über die A 10	SCHÖNERLINDE	80,00	1972	Stahl/Leichtmetall		
0007	BB /	A 114	3346514 2	Brücke im Zuge der A 114 über die A 10	SCHÖNERLINDE	80,00	1972	Stahl/Leichtmetall		
8000	BB	A 117	3647516 1	Brücke im Zuge der A 117 über DB und Weg	WALTERSDORF	22,38	1962	Beton/Stahlbeton		
0009	BB /	A 117	3647516 2	Br <u>ück</u> e im Zuge der A 117 über DB und Weg	WALTERSDORF	_ 22,38	1962	Beton/Stahlbeton		
0010	BB /	A 13	4149513 2	Datailad Acca	cmon	- 36,24	1961	Beton/Stahlbeton		
0011	BB /	A 13	4149513 1	DETOILER MODE		36,24	1961	Beton/Stahlbeton		
0012	BE /	A 100	3445051 2	Ringbahnbrücke und Rampenbrücke	Charlottenburg	108,60	1963	Spannb <mark>eton</mark>		
0013	BEC	14ro	3445105A2	bobio and (ar	Chemotenburg	~ 293 th	<u>~¹⁹⁷² г</u>	+ mnbeton		
0014	BE /	o e e	34450511		Repla		1 1 100	Spannbeton		
0015	BE	A 100	3445979 0	Westendbrücke	Charlottenburg	243,46	1963	Spannbeton		
0016	BE /	A 100	3445105A1	Brücke über den Tegeler Weg	Charlottenburg	293,11	1972	Spannbeton		
0017	BE /	A 100	3445105B1	Brücke über den Tegeler Weg	Charlottenburg	273,21	1972	Spannbeton		
0018	BE /	A 100	3445105B2	Brücke über den Tegeler Weg	Charlottenburg	273,21	1972	Spannbeton		
0019	BE /	A 100	3445105C	Brücke über den Tegeler Weg	Charlottenburg	94,97	1972	Spannbeton		
0020	BE /	A 100	3545028A2	Brücke über die Mecklenburgische Straße	Wilmersdorf	363,63	1969	Spannbeton		
0021	BE /	A 100	3545028A1	Brücke über die Mecklenburgische Straße	Wilmersdorf	356,84	1969	Spannbeton		
0022	BE /	A 100	3545019 1	BAB A 100 Brücke über die Ausfahrt Detmolder Str.	Wilmersdorf	80,88	1969	Spannbeton		
0023	BE /	A 100	3545019 2	BAB A 100 Brücke über die Ausfahrt Detmolder Str.	Wilmersdorf	80,88	1969	Spannbeton		
0024	BE /	A 100 A(Ast)	3546508 1	Brücke AS Gradestr-/über Gottlieb-Dunkel-Str	Tempelhof	253,96	1981	Spannbeton		
0025	BE /	A 100 A(Ast)	3545037 0	Brücke Einfahrt zum AK Wilmersdorf	Wilmersdorf	79,11	1973	Spannbeton		
0026	BE /	A 100 A(Ast)	3545020 0	Rampenbrücke Ausfahrt BAB A 100 Detmolder Str.	Wilmersdorf	142,12	1969	Spannbeton		
0027	BE /	A 100 D(Ast)	3545031 1	Brücke über den Westring	Wilmersdorf	272,22	1974	Spannbeton		
0028	BE /	A 100 D(Ast)	3545034 1	Brücke über die Mecklenburgische Straße	Wilmersdorf	58,80	1973	Spannbeton		
0029	BE /	A 100 E(Ast)	3445084 0	Westliche Brücke über den Siemensdamm	Charlottenburg	177,01	1964	Spannbeton		

Quelle: http://www.bast.de/DE/FB-B/Fachthemen/b4-nachrechnung-bruecken

Reassessment

Bundesministerium für Verkehr, Bau und Stadtentwicklung

Abteilung Straßenbau

Guideline for the assessment of existing bridges

Ausgabe: 05/2011

Reassessment - vertical traffic loads

- Target traffic level
 - LMM: Load model 1
 (DIN EN 1991-2/NA)
 - LM1: Load model 1
 (DIN Fachbericht)
 - BK60/30: Load model 60/30
 (DIN 1072: 1985)
 - BK60: Load model 60
 (DIN 1072: 1967)
 - BK30/30: Load model 30/30
 (DIN 1072:1985)
- > Type of traffic
 - long distance
 - medium distance
 - local traffic

Source: Bauingenieur, Ausgabe Januar 2012

Reassessment procedure

Source: Bauingenieur, Ausgabe Januar 2012

Compensation measures

- Limitations for traffic:
 - Load restriction
 - Ban of overtaking for trucks
 - Introducing a speed limit
 - Rearrangement of lanes
 - Closing and/or narrowing of lanes
- Compensating monitoring measures:
 - Installation of long-term monitoring
 - Additional inspections according DIN 1076

Retrofitting Methods for Concrete Bridges

Source: Sachstand Verstärkungsverfahren – Verstärken von Betonbrücken im Bestand, Bericht der Bundesanstalt für Straßenwesen, Heft B 75

Outline

- Introduction
- > Challenges

Management

- Inventory
- Inspection
- Load bearing capacity
- Management System
- Extreme Weather
- Large Accidents and Explosions
- Innovation
- Summary and Conclusions

Management of (aging) Infrastructure

Bridge Management System

Bridge Management System

J. Krieger, 56° Congresso Brasileiro do Concreto, Natal October 7-10, 2014

 \geq

 \geq

Maintenance Strategies

Bridge Management System - Example

Concrete repai costs intervention	r 1.000 m² 490.500 € 2014 or 2015	duration	3 months						
Asphalt replace costs intervention	ement (without waterpro 64.200 € 2014 or 2015	bofing) duration	3 months						
Crack injection costs intervention	129.100 € 2014 to 2018	duration	3 months						
Embankment recosts intervention	e pair (30 m³) 11.700 € 2014 or 2015	duration	3 months						
Retaining Syste costs intervention	Retaining System repair (33 m)/replacement (100 m)costs $19.700 \notin / 34.100 \notin$ duration1 weekintervention 2014 to 2019 $100 \notin$ duration1 week								
Bearing repair	/replacement								

Bridge Management System - Example

	Measure									
	Concrete	Layer repair	Crack	Embank-	Railing	Bearing				
Alternative	repair		injection	ment	repair/replace-	repair/re-				
				repair	ment	placement				
Α	2014	2014		2014	2014 I	2014 I				
В	2014	2014		2014	2014 A	2014 A				
С	2015	2015		2015	2015 I	2015 I				
D	2015	2015		2015	2015 A	2015 A				
E	2014	2014		2014	2018 I	2016 I				
F	2014	2014		2014	2018 A	2017 A				
G	2015	2015		2015	2018 I	2016 I				
Н	2015	2015		2015	2018 A	2018 A				
Ι	2015	2015		2015	2015 A	2018 A				
J	2015	2015	2015	2015	2015 A	2015 A				
K	2015	2017	2015	2015	2017 A	2016 A				

I = repair A = replacement

Alternative	owner	costs [€] user e	nvironment	<u>Owner:</u> maintenance
Δ	040 492	E 49E 922	150 245	traffic safety
B	953.284	5.685.822	158.345	residual value
С	926.708	5.520.215	153.733	User:
D	929.832	5.520.215	153.733	time
E	1.090.105	8.685.822	222.087	oporation
G	1.059.736	8.520.215	217.475	operation
н	1.060.303	8.520.215	217.475	accidents
	975.235	5.520.215	153.733	Environment:
K J	985.743	5.685.822	158.345 329.388	climate
	1.007.102	11.027.371	327.300	pollution

noise

Alternative	benef	ït [€]	
	user	environment	
A B C D E F G H	544.672.79 1.141.349.526 639.504.025 1.236.291.331 734.740.830 1.112.565.378 991.349.709 1.207.507.183	20.438.750 44.152.697 24.123.846 47.905.083 27.842.248 42.944.799 37.598.408 46.697.184	Benefit : Costs _{do nothing} - Costs _{measure} (user + environment)
I J K	1.207.507.183 1.207.507.183 1.424.570.426	46.697.184 46.697.184 5.494.698	

Bridge Management System - Example

Prioriti-	Cost/Ben	efit-Ratio
	without	with discount
sation	discount rate	rate
		3%
best	D	D
	Ι	Ι
	J	J
	В	В
	Н	Н
	F	F
	K	G
	G	K
	С	С
▼	E	E
worst	А	А

Cost/Benefit - Ratio:

Owner - Costs /

User + Environment - Benefit

				Gesamt	Gesamt-			Summe aus					
		· ·	lahr dar	a		Su	imme	aus	nd	1 12 0	notoli	e am	
			lahr der	Gesamt-		N	utzen	und	Pan	Ranafolge am			
			Gesar	nt-		Summe	aus				ct	37	
		Lahr d	or			Summe aus	md	Rang	<u>iolo</u> e	am		36	
		Jahr der	Gesamt-			Nutzen und	Rano	nfolge a	m	t	37	34	
Nr.	Strategie	Maßnahme	Maßnahme-	Nutzen		Kosten	C	biekt	-	27	36	32	
			Kosten*		d	ler Maßnahme		ojent	-	37	34	30	
1	FBÜK	6	-30.000	123.200)	93.200		3	7 -	36	32	28	
- 2	FBÜK	7	-29,100	125.400	5	96.300		- 3	6	34	30	27	
3	FBÜK	8	-28.227	127.600)	99.373		3	4	20	28	26	
4	FBÜK	9	-27.380	129.800)	102.420		3	2	<u>- 0</u>	27	25	
5	FBÜK	10	-26.559	132.000)	105.441		3	0	20	26	24	
6	FBÜK	11	-25.762	134.200	51	108.438		2	8	21	25	23	
7	FBÜK	12	-24.989	136.400)	111.411		2	7	20	24	40	
8	FBÜK	13	-24.239	138.600)	114.361	·	2	6	2.5	23	39	
9	FBÜK	14	-23.512	140.800	5	117.288		2	5	24	40	38	
10	FBÜK	15	-22.807	143.000)	120.193		2	4	23 40	39	35	
11	FBÜK	16	-22.123	145.200)	123.077		2	3	20	38	33	
12	Kappe	19	-60.000	144.900)	84.900		4	0	20	35	31	
13	Kappe	20	-58.200	147.000)	88.800		3	9	30	33	29	
14	Kappe	21	-56.454	149.100)	92.646		3	8	33	31	21	
15	Kappe	22	-54.760	151.200	5	96.440		3	5	31	29	19	
16	Kappe	23	-53.118	153.300)	100.182		3	3	29	21	18	
17	Kappe	24	-51.524	155.400)	103.876		3	1	21	19	16	
18	Kappe	25	-49.978	157.500) T	107.522		2	9	19	18	14	
19	Belag	17	-40.000	234.500)	194.500		2	1	18	16	12	
20	Belag	18	-38.800	238.000)	199.200	[].	1	9	16	14	22	
21	Belag	19	-37.636	241.500	Σ	203.864		1	8	14	12	20	
22	Belag	20	-36.507	245.000)	208.493		1	6	12	22	17	
23	Belag	21	-35.412	248.500)	213.088		1	4	22	20	15	
24	Belag	22	-34.349	252.000)	217.651		1	2	20	17	13	
25	Lager	22	-90.000	280.800)	190.800		2	2	17	15	7	
26	Lager	23	-87.300	284.700)	197.400		2	0	15	13	5	
_ 27	Lager	24	-84.681	288.600		203.919		1	7	13		4	
28	Lager	25	-82.141	292.500		210.359		1	5	7		3	
29	Lager	26	-79.676	296.400)	216.724		1	3 -	5	-4-	2	
30	K+B	19	-87.636	579.600)	491.964			7	4		10	
31	K+B	20	-85.007	588.000)	502.993			5	3	10	9	
32	K+B	21	-82.457	596.400)_ _	513.943	L	'	4_	2	10	8	
33	K+B	22	-79.983	604.800)	524.817			3	10		11	
34	K+B+F	22	-159.110	1.261.400)	1.102.290			2	9	0	6	
35	K+L	23	-130.418	512.460	2	382.042	L	1	0	8	11	1	
36	K+L	24	-126.505	519.480	2	392.975			9	11	- 0	ł	
37	K+L	25	-122.710	526.500)	403.790			8	6	1	1	
38	F+K	16	-82.123	320.100)	237.977	L	1	1	1	t		
39	F+K+B	16	-122.123	624.800) [502.677			6		•		
40	F+K+B+L	16	-212.123	1.467.200)	1.255.077			1				

- Analysis of alternatives for all objects
- Network-wide ranking
- Maintenance program without any restrictions

Wanted:

Optimised maintenance program (budget, other constraints)

Scenarios:

Optimal network-wide condition level for a given budget (Financial Scenario)

Minimum budget for a given network-wide condition level (Quality Scenario)

Possible boundary Conditions:

- yearly budget restrictions
- minimum condition standard
- favour structures with large traffic
- favour combination of measures within a line
- exceptional measures can be added manual

Bridge Management System - Example

	Kreuzung Parkplätze						N		
	Fahrbahnquerschnitt								
	Bauwerksnummer					_	-8233652		
Bauwerk	ASB-Nummer Interne BauwNr. Betriebskilometer Brückenfläche [m²] Lichte Höhe [m]	8234704 BW 51 42,568 482 4,99	8234705 BW 52 43,020 678 8,10	8234706 BW 53 43,612 336 4,70	8233651 BW 54 44,068 520 4,70	8233652 BW 55 45,725 465 4,50	8233653 BW 56 46,231 3646 4,70		
Teilbauwerk	Teilbauwerksnummer Bauwerksart Baujahr Länge Brückenfläche [m²] Brückenklasse Hauptbaustoff Überbau Bordbreite [m] Bauwerkszustand Maßgebender Schaden Max S Max V	1 2 1968 1968 14,4 14,4 241 241 60 60 StB StB 119 199 Ka 1,9 Ka 1,9 Be 1,1 Be 1,1 Be 1,1 Be 1,1	1 2 1969 1969 21,8 21,8 339 339 60 60 SpB SpB 2/3 2/3 Se 2,3 Se 2,3 Se 2,3 Se 2,3 Be 2,1 Be 2,1	0 1971 44,8 336 30 SpB 2,3 Fa 2,3 Fa 2,3 Fa 2,3	0 1971 65,3 520 30 SpB 0	0 1969 10,5 465 60 SiB 2,2 So 2,2 So 2,2 So 2,2 Ka 1,8	1 2 3 4 - - - - 1972 1972 1972 1972 68,8 68,8 68,8 68,8 774 1049 1049 774 60 60 60 60 SpB SpB SpB SpB 2!5 2!5 2.5 2!5 Ka 2,4 Ka 2,4 Ka 2,4 Ka 2,4 Fo 2,1 Fo 2,1 Fo 2,1 Fo 2,1 Se 2,0 Se 2,0 Se 2,0 Se 2,0		
Max D MASSNAHMEN obenliegend EMPFEHLUNGEN untenliegend		Ka 1,9 Ka 1,9 A A DDDD DDDD	Ka 1,8 Ka 1,8 ABGGGADGGG D D	Fo 2,3		G DD	Fo 2.1 Fo 2.1 Fu 2.1 Fo 2.1 ABG ABG ABG ABG ABG DHDD DHDD DHDD DHDD DHDD]	

Outline

- Introduction
- > Challenges
- Management
 - Inventory
 - Inspection
 - Load bearing capacity
 - Management System

Extreme Weather

- Large Accidents and Explosions
- Innovation
- Summary and Conclusions

Extreme Weather

RIMAROCC – Methodology

Extreme Weather – Example Concrete Frame

Load case: positive temperature gradient (DIN FB 101-2009) and relevant characteristic values from regional climate projection (REMO)

Temperature (constant and linear)

- Increase of the max. bending moment and the edge stresses by 7.5% compared to DIN FB 101
- Increase of max. bending moment and edge stress by 24% compared to DIN 1072:1967 (durability)

Extreme Weather - Conclusions

<u>Temperature</u>

- Design of bridge bearings
- Design of integral bridges and groups of fixed bridge piers
- Fatigue considerations

<u>Wind</u>

- Effects of second order for high bridges
- Reductions according to DIN FB as well as National Annexes have to be reassessed
- Bridges designed according to DIN 1072, 1967 have significant deficits in all respects

bast

Extreme Weather – IT-System

2040: Number of days with more than 20 mm/h

Road sections with qn <= 0,1 > 20mm/h

Extreme Weather – IT-System

Outline

- Introduction
- > Challenges
- > Bridge Management
 - Inventory
 - Inspection
 - Load bearing capacity of existing bridges
 - Management System
- Extreme Weather
- Large Accidents and Explosions
- Innovation
- Summary and Conclusions

Simulation of large Fires on and under Bridges

Fire on Bridges

Suspension Bridge, suspended deck arch bridge

Fire under Bridges

Concrete, prestressed concrete, steel and composite bridges with slab, beam or box girder cross sections

Fire Scenarios:

- Tank truck with petrol: 20 kg/s release rate
- Tank truck with petrol: 300 kg/s release rate

Tank Truck (28t Petrol)

Fires on Bridges (suspended deck arch bridge)

Bezeichnung	Burning liquid [kg] an [%]	Drained liquid [kg] an [%]		
		/0		
Kuppe300G1	1.400 / 5%	26.600/ 95%		
Kuppe 300G2	1.700 / 6%	26.300 / 94%		
Kuppe20,6G1	5.000 / 18%	23.000 / 82%		
Kuppe20,6G2	6.500 / 23%	21.500 / 77%		
Neigung300G1	2.000 / 7%	26.000 / 93%		
Neigung300G2	2.500 / 9%	25.500 / 91%		
Neigung20,6G1	6.500 / 23%	21.500 / 77%		
Neigung20,6G2	7.800 28%	20.200 / 72%		

Aq Drainage Cross Section

Ao Surface

- v Streaming
- L Length of the Bridge
- n Number of Draines

SKRIBT+

Tank Truck (28t Petrol)

Fires under Bridges

Pool fire geometry and size depend on:

- Terrain topology
- Design of Embankment
- Roadway slope
- Location of release

Released petrol may continue to burn in open drainages outside the bridge area -> no effect on bridge structure

Conclusions

- > Major Fires under bridges have similar characteristics as tunnel fires
 - Very high temperatures/steep temperature increases
 - Comparable to ZTV-ING-temperature-time-curve
 - Even relatively "small" fires result in temperatures >1.000 °C (large scale test) and large areas with concrete spalling
- Major Fires on Bridges lead to lower temperature loads
 - factorized ZTV-ING-temperature-time-curves
 - Load carrying members mostly thin walled steel. Therefore, possibly endangered

Threads for Road Tunnels

Explosions

High Speed dynamic Effects - Shield Tunnel under Blast Exposure

Explosions

Tunnel model tests

J. Krieger, 56° Congresso Brasileiro do Concreto, Natal October 7-10, 2014

EMI

Explosions

Tunnel model tests – Numerical simulations

Conclusions for Bridges and Tunnels

- > No protection measures for large explosive charges
- Small explosive charges are in general not critical for bridges and tunnels
- Where these charges are critical, protection measures are possible
 - Access prevention for box girders
 - Distance, linings for bridge cables
 - Protection layers with energy absorbing and ductile materials
 - Assessment of soil bedding

Outline

- Introduction
- > Challenges
- > Bridge Management
 - Inventory
 - Inspection
 - Load bearing capacity of existing bridges
 - Management System
- Extreme Weather
- Large Accidents and Explosions
- Innovation
- Summary and Conclusions

Road in the 21st Century

Federal Secretary of Transport:

"Efficient, safe and reliable transport infrastructure is a basis for growth and employment.

Road is more than concrete or asphalt. With **innovative techniques and materials** congestion and accidents can be reduced, noise and emissions lowered, and even energy could be produced. With our research program, we give the road a push of **innovation**.

This leads to a benefit for everybody: Road users, residents, economy and environment.,

www.bmvbs.de

Programmatic Key Aspects "Road in the 21st Century"

Safe and reliable

- Service Levels
- Climate Change
- Safety/Security

Intelligent

- Materials/Construction
- Alignment/Design
- IT Systems

Energy saving and delivering

- Kinetic Energy/Energy harvesting
- Photovoltaics, Thermovoltaics
- Geothermal energy
- Network Road

Low emission

- Low Noise
- Retention and reduction of emissions
- Emissions Vehicles/Road

Programmatic Key Aspects "Road in the 21st Century"

Part of the habitat

- Roads and Landscape
- Road and urban Environment
- Road and aging Society

Sustainable

- Closed loop recycling
- Lifecycle Management
- Maintenance-/Asset-Management

Carrier for innovation

- Boundary conditions
- Funding instruments
- From innovation into practice (pilot applications)

Outline

- Introduction
- > Challenges
- > Bridge Management
 - Bridge Inventory
 - Bridge Inspection
 - Load bearing capacity of existing bridges
 - Bridge Management System
- Extreme Weather
- Large Accidents and Incidents (security)
- Innovation
- Summary and Conclusions

Summary and Conclusions

- Aging Infrastructure contributes to reduced availability
- Aging infrastructure can lead to additional risks
- Regular inspections and assessments together with a risk management approach are indispensable
- Effects from extreme weather (Climate Change) are to be taken into account in long term infrastructure management
- Upgrading and/or replacement are to be planned with regard to the criticality of infrastructure objects (network level)

Holistic Management of Road Infrastructure (lifecycle and risk based)

Thank You very much for your kind attention!

Additional information: www.bast.de

Contact: krieger@bast.de