



Anais do 56º Congresso Brasileiro do Concreto CBC2014 Outubro / 2014



@ 2014 - IBRACON - ISSN 2175-8182

# FIELD MONITORING OF REBAR VIBRATIONS IN CONCRETE BRIDGE DECKS UNDER TRAFFIC LOADS

Hani Nassif, Ph.D., P.E., Professor

Miguel Beltran, Ph.D. Candidate

Rutgers Infrastructure Monitoring and Evaluation (RIME) Laboratory

October, 2014





- Introduction
  - Cracking Evaluation of the Delware River Bridge
- Field Monitoring of the Hackensack River Bridge
- Signal Processing and Analysis
- Conclusions
- Future Research

# **Problem Statement**

GERS

• Bridge deck concrete at early age may be subjected to vibrations due to adjacent lane traffic

• High rebar velocities relative to adjacent concrete can weaken rebar bond

• Direct measurement of displacements and velocities of bridge components can be difficult and impractical



# **Objectives**

TGERS

• Obtain field measurements of accelerations, velocities and displacements of bridge components

• Estimate bridge velocities and displacements from accelerometer data

• Investigate deck rebar debonding due to adjacent traffic vibrations

## RUTGERS

# Introduction

#### **RUTGERS-RIME**

<u>Rebar Debonding on the Delaware River</u> <u>Turnpike Bridge (Structure No. P0.00)</u>

- Adjacent lane vibrations can damage paste-aggregate bond and paste-rebar bonds
  - Cracks circumnavigate
    aggregate when the binding
    paste is still weak (early age)
  - Coring samples showed smooth rebar imprints with shallow rib depth, signifying poor epoxycoated rebar bond



## Introduction

#### **RUTGERS-RIME**

## <u>Rebar Debonding on the Delaware River</u> <u>Turnpike Bridge (Structure No. P0.00)</u>

**JTGERS** 



• Results showed that the rebar vibration relative to the deck was significant, prompting additional investigation on other bridges

# RUTGERS Experimental Program *RUTGERS-RIME* Summary of Field Testing Program: Hackensack River Bridge

- Directly measure girder accelerations, velocities, displacements, and strains
- Monitor bridge dynamic response during the deck pour at 5 different phases:
  - 1. At 50% tiedown of rebar intersections
  - 2. At 100% tiedown of rebar intersections
  - 3. During concrete placement on span
  - 4. During the first 4 hours of concrete age
  - 5. At 3 days concrete age

RUTGERS Experimental Program RUTGERS-RIME

## **Bridge Details and Instrumentation**

- Stringer and floor beam systems in the approach span
- Center portion of the roadway was poured for two simple spans



**Bridge cross section** 

RUTGERS Experimental Program RUTGERS-RIME

## **Testing Equipment**

<u>Structural Testing System (STS) by Bridge</u> <u>Diagnostics, Inc. (BDI)</u>

- Modular data acquisition system
- Rugged and allows for arbitrary wiring



# <sup>RUTGERS</sup> Experimental Program *RUTGERS-RIME*

## Accessibility

- Ease of access via scaffolding
- LDV access to only 2 girders out of 4







# RUTGERS Experimental Program RUTGERS-RIME

#### Instrumentation



**Plan view** 

# RUTGERS Experimental Program RUTGERS-RIME

#### Instrumentation

**[R]:** *LDV REFLECTOR* 

#### [A]: ACCELEROMETER

#### **[S]:** STRAIN TRANSDUCER



**Section view** 

# **Rebar Tiedown Conditions**

• Vibration comparison of 50% vs 100% tiedowns of rebar intersections





#### 50% tiedowns

#### 100% tiedowns

### 50% Tiedowns of Rebar Intersections

## Top rebar acc. = 273% Bottom rebar acc.



Top rebar acc. = 115% Bottom rebar acc.



# **RUTGERS** Analysis and Results

#### **RUTGERS-RIME**

#### **Isolated Forced Vibration Response**



15

Analysis and Results RUTGERS RUTGERS-RIME

**Typical Girder Displacement Estimates** 

The user can approximate the bounds of integration graphically for isolated forced response segments



Analysis and Results RUTGERS RUTGERS-RIME

**Typical Girder Displacement Estimates** 

## A 10% expansion of the integration interval typically results in an <u>overestimate</u> of displacement



**Typical Girder Displacement Estimates** 

# A 10% <u>contraction</u> of the integration interval typically results in an <u>underestimate</u> of displacement



Time (sec)

# RUTGERS Analysis and Results

#### **Typical Girder Velocity Estimate**



**RUTGERS-RIME** 

#### Rebar and Stringer Velocity Estimates

- The same bounds of integration used to estimate the girder response are applied to the rebar and stringer acceleration data
- The <u>rebar global response</u> and <u>stringer global response</u>
  fluctuate due to different live loads
- Meanwhile, **rebar relative velocities** steadily diminish



Rebar and Stringer Velocities over Time

## 26 Minutes Concrete Age



21

Rebar and Stringer Velocities over Time

## 49 Minutes Concrete Age



22

#### Rebar and Stringer Velocities over Time

## 68 Minutes Concrete Age



Rebar and Stringer Velocities over Time

## 125 Minutes Concrete Age



Rebar and Stringer Frequency Spectra



Rebar and Stringer Frequency Spectra





GERS

- 1. The estimation procedure can be applied to highway traffic when heavy vehicles are sufficiently isolated
- 2. A specific set of integration bounds that yields accurate estimates for one bridge component can be used to evaluate the responses of other loaded components in the same span
- 3. Given the accuracy of the bridge response estimates and the margin of safety provided by the conservative vibration limits, there was no evidence to suggest threat of debonding of reinforcement

• A more rational method is needed to determine the bounds of forced vibration. Weigh-in-Motion (WIM) sensors at the bridge supports may be used to signal the start and end times of the span loading.

**Future Research** 

GERS

- Adequate development of rebar bond can be verified experimentally by obtaining coring samples above the top layer rebar. Alternatively, nondestructive ultrasound testing may be performed
- Laboratory work can done to model the extreme cases of vibration that can occur in the field. Upper limits on vibration may be more accurately defined.

RUTGERS-RIME

- RUTGERS Acknowledgements RUTGERS-RIME
  - NJTA and their staff: William Wilson, Joe Sheedy, Frank Corso, Scott Johnsen, and Rod Simon.
  - Jacobs: Jim Caffrey and Paul DeCasas
  - Dewberry: Edward Bier and Andy Kamilaris
  - New Jersey State Police
  - Former Students: Joe Davis, Nakin Sukasawang, Eric Rundstrom, Chris Ericsson, Michael Boxer, Derek Lam, and Mike Gonzalez.
  - Current Students: Peng Lou, Michael Salvadar, Zeeshan Ghanchi, Adi Abu-Obeida.
  - Post-Doctoral Associate: Dan Su, Chaekuk Na.