

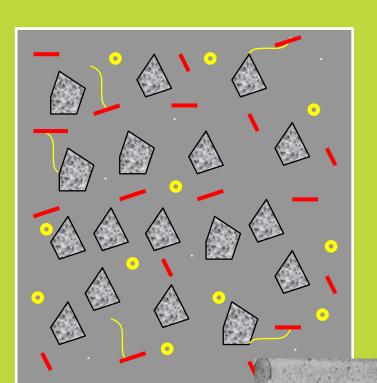
Entrepreneurial Operating Philosophy Competitive Advantage of Leading Brands Balance Between Consumer and Industrial Businesses Growth Strategy Balanced Between Internal Investment and Acquisitions

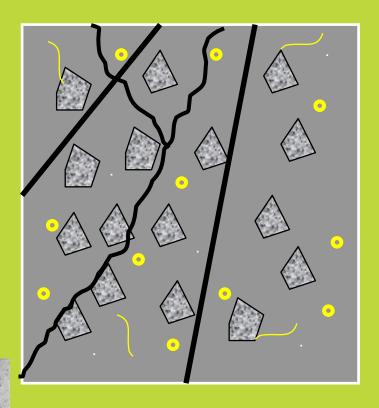
Consumer Segment (35%)

Industrial Segment (65%)

PERFORMANCE

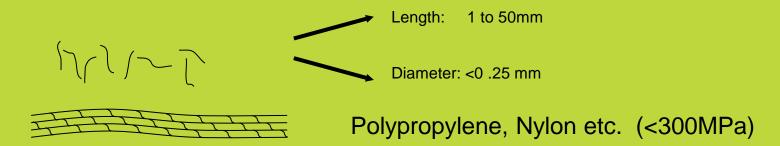
Associada à:

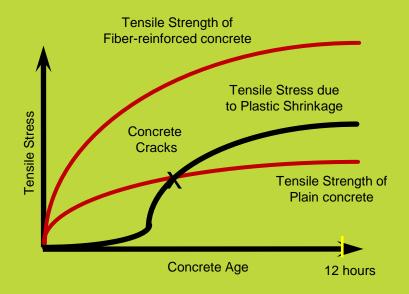



Macro vs Micro Fibers Crack Resisting Mechanism

Micro Fibers

Closely spaced = resists micro cracking (plastic shrinkage)


Macro Fibers


Far apart = resists large cracks

Micro Fiber Behavior

High Surface area allows for improvement in early tensile strength and ductility of **young** concrete matrix by bridging plastic shrinkage induced micro cracks that develop during the early stages of hydration (<12-24 hours).

ALTO MÓDULO DE ELASTICIDADE: MAIOR DURABILIDADE E DESEMPENHO

TUF-STRAND SF é uma Macrofibra sintética estrutural patenteada e certificada pela UL que é usada para a substituição de fibras de aços e telas soldadas para execução de pisos apoiados sobre solo, pavimentos rodoviários, calçadas, aplicações de concreto projetado e estruturas pré-moldadas. TUF-STRAND SF proporcionará ao concreto reforçado maior tenacidade e capacidade estrutural ao mesmo tempo em que fornece uma resistência à fissuração causada pela retração.

Nosso suporte técnico oferece assistência em projetos, auxiliando a determinar as dosagens adequadas de fibras para pisos apoiados sobre solo concebidos de acordo com a ACI 360 através de nosso software TUF-STRAND SF.

ONDE VOCÊ PODE USAR AS FIBRAS TUF-STRAND?

- Pisos Industriais e Pavimentos de Concreto;
- › Pisos elevados e steel decks;
- Capeamentos de lajes e overlays.
- Estruturas de Concreto Pré-moldadas;
- Paredes e muros de Concreto;
- Concreto Projetado;

O QUE AS FIBRAS PODEM FAZER PARA VOCÊ:

- > Redução do tempo de execução;
- › Diminuição do custo e mão-de-obra.

O QUE AS FIBRAS PODEM FAZER PARA O CONCRETO:

- Reforço equivalente às telas soldadas e fibras de aço;
- Testada de acordo com as principais normas da ASTM;
- > Produto patenteado com todo suporte técnico necessário.

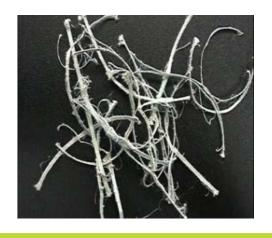
BENEFÍCIOS PARA EXECUTORES, PROJETISTAS E PROPRIETÁRIOS

- Melhor controle da retração, inibindo o surgimento de fissuras e reduzindo a segregação;
- Reduz a exsudação no concreto;

- > Reforço tridimensional;
- Aumenta a durabilidade,
 resistência à fadiga e resistência
 a flexão da estrutura;

- › Fácil adição e alta dispersão no concreto;
- Atende à ASTM C1116 e testado de acordo com as normas ASTM C1399, ASTM C1550 e ASTM C1609;
- › Aplicável para projetos conforme ACI 360 R-10;
- Significativa redução de custo em relação às telas soldadas;
- Resistente à corrosão e à alcalinidade, reforço não-magnético e não-condutivo.

TUF-STRAND SF tem sistema patenteado


A macrofibra sintética estrutural **TUF-STRAND SF** detém duas patentes em seu mecanismo:

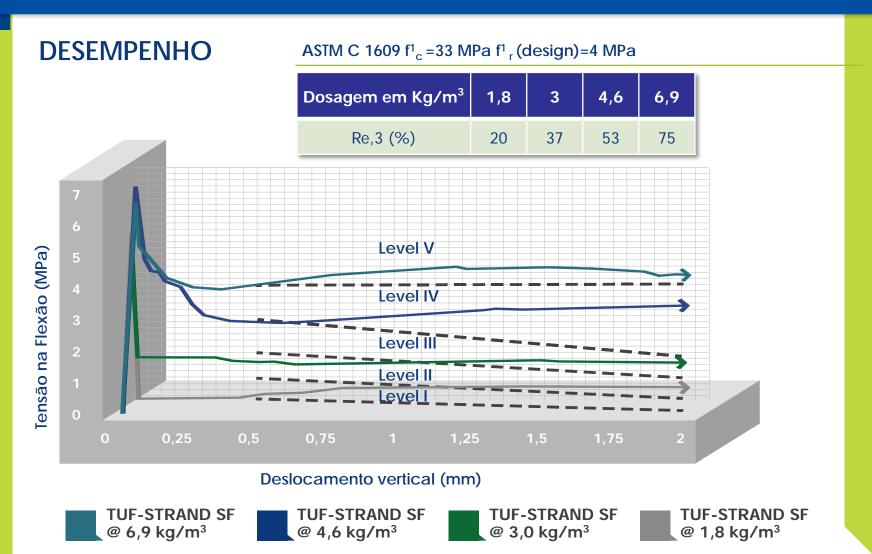
1 sistema de fibrilação para ancoragem

2 distribuição twist

An Agency of the United States

U.S. Patent #'s

5,993,53730 de novembro, 1999 **6,423,134**23 de julho, 2002


DESEMPENHO: A MELHOR!

CARACTERÍSTICAS TÉCNICAS						
Material:	Polipropileno/Polietieno					
Tipo:	Monofilamento					
Densidade:	0,92 g/cm ³					
Comprimento:	51mm					
Fator de Forma:	74					
Resistência à tração:	600 - 650 MPa					
Módulo de elasticidade:	9,5 GPa					
Absorção:	Insignificante					
Cor:	Branco					
Resistência ao álcalis/ácidos	Excelente					
Dosagens:	1,8 – 12 Kg/m ³					

O alto módulo de elasticidade de TUF-STRAND SF garante um ótimo desempenho na resistência residual e maior durabilidade para a estrutura.

As dosagens de **TUF-STRAND SF** variam de 1,8 a 12 kg/m³, dependendo de cada aplicação e capacidade de resistência requerida.

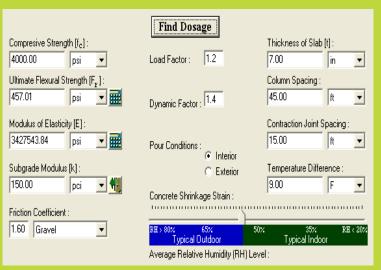
As fibras podem ser adicionadas ao concreto diretamente no caminhão betoneira ou na própria usina de concreto, sempre atentando para inseri-la de forma gradual.

Para maiores informações, contato nosso departamento técnico.

Uma parceria com a Viapol irá lhe proporcionar:

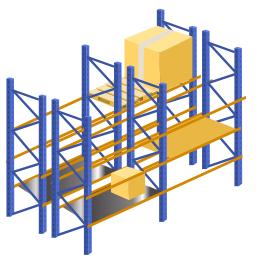
- Acesso ao software de dimensionamento de pisos e pavimentos de concreto da Euclid;
- > Suporte técnico especializado em todo o Brasil;
- Especificações de dosagem para cada aplicação com atedimento personalizado;
- Programas de treinamento em dosagem e aplicação do Concreto Reforçado com Fibras TUF-STRAND
 SF para Executores de pisos e Concreteiras;
- Aplicativo para celulares Android e IOS para rápido cálculo de dosagem em pisos de concreto e estruturas de concreto pré-moldadas.

Fibercalc IPhone Euco fibercalc – Android

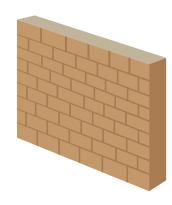


Slab on Grade Design Tools

Non-structural precast / wall structures with single mat steel



Fiber Dosage	Flexural	ASTM C 1018-97				ASTM C 1018-97				Toughness			
kg/m ³	Strength	Toughness Indices				Residual Strength Factors			JSCE ^t	Levels	R _{e3}		
(lbs/yd³)	(MPa)	I ₅	I ₁₀	I ₂₀	I ₃₀	I ₆₀	R _{5,10}	R _{10,20}	R _{20,30}	R _{30,60}	(MPa)	3 MPa	(%)
1.8 (3.0)	3.9	3.7	5.7	8.5	10.7	16.5	39.8	27.8	21.6	19.3	0.95	I-II	24.6
3.0 (5.0)	4.1	4.0	6.3	9.9	13.2	22.6	47.4	36.0	32.3	31.5	1.41	II-III	34.8
4.6 (7.8)	3.8	3.4	5.7	9.3	12.8	23.4	45.0	36.6	34.7	35.3	1.95	III-IV	51.1
Jananese Society for Civil Engineering													

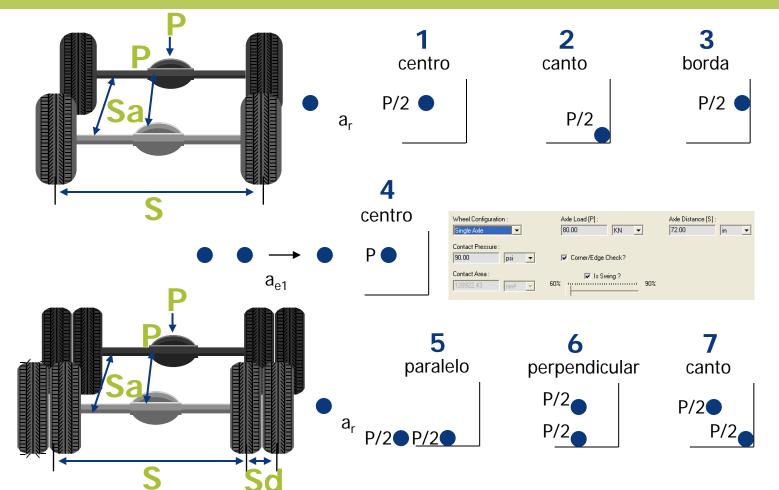

Results shown are taken from an average of three beam tests

viapol

Software Completo de dimensionamento

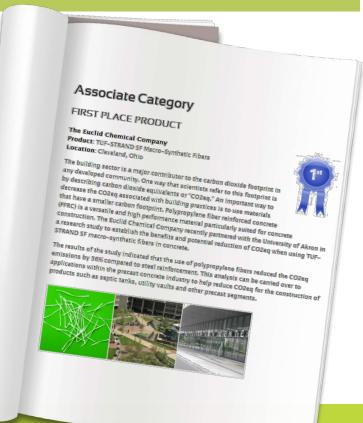
Cargas concentradas (porta paletes)

Cargas lineares


Cargas distribuídas

Cargas móveis

Software Completo de dimensionamento



PRÊMIO SUSTENTABILIDADE

A Euclid Chemical Company, controladora da Viapol e pertencente à holding norte-americana RPM International, foi vencedora do Prêmio Sustentabilidade 2014, concedido pela NPCA - National Precast Concrete Association (EUA).

Na categoria "Produtos", o destaque foi para a **TUF-STRAND SF**, voltado à redução do dióxido de carbono gerado em construções.

A evolução e a sustentabilidade

Propriedade	Fibras de Aço	Macrofibras TUF- STRAND SF	Microfibras Fiberstrand
Fissuras por retração plástica	***	***	****
Fissuras por retração hidráulica/térmica	****	****	***
Resistência pós-fissuração (Tenacidade)	****	****	***
Controle de abertura de fissuras	****	****	***
Resistência ao impacto e à fadiga	****	****	***
Efeito Anti-spalling	***	***	****
Resistência à corrosão	***	****	****

NORMAS TÉCNICAS:

ASTM C1116

Standard Specification for Fiber-Reinforced Concrete

ASTM C1609

Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete

ASTM C1399

Standard Test Method for Obtaining Average Residual Strength of Fiber-Reinforced Concrete

ASTM C1550

Standard Test Method for Flexural Toughness of Fiber-Reinforced Concrete

JSCE-SF4

Method of Test for Flexural Strength and Flexural Toughness of Fiber-Reinforced Concrete

NORMAS TÉCNICAS:

ACI Committee 544

Fiber-Reinforced Concrete

ACI Committee 360

Guide to Design of Slab-on-ground

EN 14651

Test Method for Fibered Concrete – Measuring the Flexural Tensile Strength

Concrete Society

TR34 - Concrete Industrial Ground Floors; TR65 - Guidance on the use of Macro Syntethic FRC

EFNARC

Experts for Specialized Construction and Concrete Systems

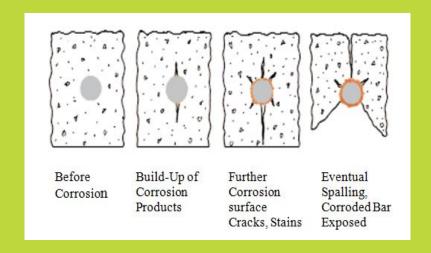
FIBRAS TUF-STRAND EM PRÉ-FABRICADOS

TUF STRAND SF in Bridges

FIBRAS TUF-STRAND EM PONTES E PAVIMENTOS RODOVIÁRIOS

Reinforcement Corrosion

Premature Concrete Delamination


Costly repairs and traffic consequence

Structural Consequence

Rebar corrosion

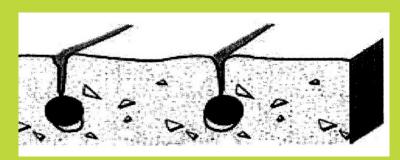
- Reduction in reinforcement cross sectional area/tensile strength
- Reduction in reinforcement bond strength with concrete
- Expansion of reinforcement causing concrete delamination

Concrete delamination

- Reduction in compression zone strength and integrity
- Reduction in overall composite strength

Bridge Deck Construction Factors (Cracking)

Large exposed surface area


Direct sun and wind exposure

Difficult to implement proper curing

Fresh concrete and equipment supported by non-composite support which is progressively loaded and deformed during the long casting schedule deforming setting concrete

TUF STRAND SF in High Performance Concrete (Marine)

- TUF STRAND SF at dosages up to 4.6kg/m does not negatively impact Chloride ingress in <u>uncracked</u> ternary blend concrete
- Major contributor to accelerated reinforcement corrosion in high performance concrete is shrinkage related cracking

Controlled Evaporation Rate Target of 1.0kg/m²/hr

Results

Mixture	Fiber Volume (%)	Average Crack width (mm)	Max Crack width (mm)	Total Crack length (mm)	Total Crack Area (mm²)	Reduction in Total crack area (%)
Ter 50	0	0.34	0.85	256.8	87.3	-
Ter 50 TS	0.2	0.15	0.39	154	23.1	73.5
Ter 50 TS	0.33	0	0	0	0	100
Ter 75	0	0.19	0.33	149.1	28.3	-
Ter 75 TS	0.2	0	0	0	0	100

^{**}Required fiber dosage depends on mixture design, evaporation rate and level of restraint

Successful Projects

TUF-STRAND SF Photo Library

The Euclid Chemical Company
19215 Redwood Rd & Clovoland, Ohr 44110
Tol-free 1800 321-7628 & Fise E161531-6588

Project: Nova Scotia Jeddore bridge, Jeddore, Nova Scotia, CANADA

Fiber Dosage: 11.5 lbs/yd - replacement of WWM overlay with extreme durability concern

TUF-STRAND SF Photo Library

19216 Redwood Rd ◆ Clovoland, OH 44110 Tol-free (500) 321-7625 ◆ Pair (216) 531-959

Project: Fiber Dosage: Mason St Bridge Rehabilitation, Green Bay, Wisconsin

8 lbs/yd - for comparison to 4x4 4/4 WWM

rollerscreed applied broom finish

Notes:

THE EUCLID CHEMICAL COMPANY

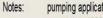
Notes: pumping application, float and broom finish pour date - 2000 - poor finishing, inexperienced work crew

TUF-STRAND

The second second

Bridge Rehabilitation

TUF-STRAND SF Photo Library


The Euclid Chemical Company 1528 Fedwood Rd ◆ Geveland, OH 44110 Tul-line (800) 321-7028 ◆ Fax. (210) 331-3630

Project: MacKay Bridge, Halifax, Nova Scotia, CANADA Fiber Dosage: 5.0 lbs/yd - for supplement to existing steel

pumping application into formwork pour dates, 1999, 2003

TUF STRAND SF em estruturas

FIBRAS TUF-STRAND EM STEEL DECK

Charlotte Parking Garage

- All stories used macro-synthetic fibers
- Confirmation with Engineer; significant cost savings in time and placement

Fashion City

City: Pedro Leopoldo (Minas Gerais)

Fiber dosage: 4,5 kg/m³ Total area: 30.000 m²

Slab Overlay Thickness: 5 - 7 cm

Joint spacing: 4 x 4 m

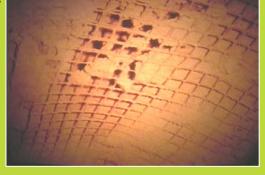
FIBRAS TUF-STRAND EM MEGA PROJETOS

O NOVO MEADOWLANDS STADIUM, NJ

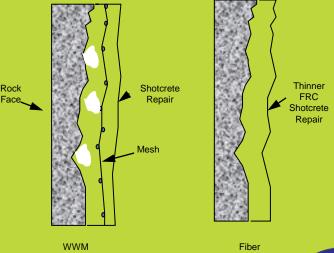
FIBRAS TUF-STRAND EM MEGA PROJETOS

YANKEE STADIUM, BRONX, NY

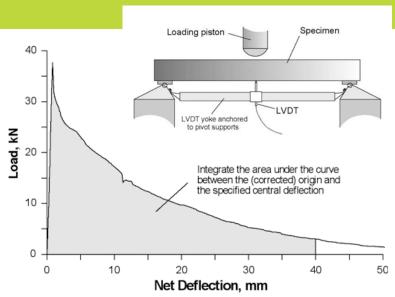
TUF STRAND SF in Shotcrete


Advantage of Fiber Reinforced Concrete over WWM

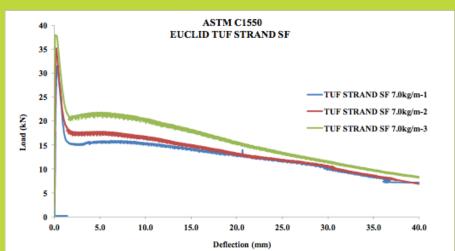
- Labor intensive mesh is eliminated (productivity)
- Potential of "voiding" behind the mesh is eliminated
- Overall amount of shotcrete needed will typically be less
- Fiber reinforced shotcrete linings will typically spall less
- Properly Constructed Joints provide load transfer


Influence of Construction Joints in Wet-Mix Shotcrete Panels AMER

by Jean-Francois Trottier, Dean Forgeron, and Michael Mahoney
Department of Civil Engineering—Dalhousie University—Halitax, Nova Scotia, Canada



Fiber Performance in Shotcrete (ASTM C1550)



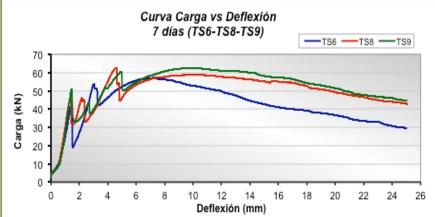
Department of Civil Engineering Dalhousie University, Halifax, Nova Scotia

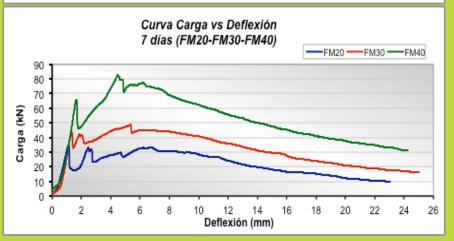
ASTM C 1550 Standard Test Method for Flexural Toughness of Fiber Reinforced Shotcrete

Panel Type Tuf-Strand SF @ 7.0 kg/m³
Age Tested: 8 Days
Fiber Vol: 7.0 kg/m³

Date Cast: November 22, 2010
Date Tested: November 30, 2010

EFNARC Testing


RESUMEN ORDEN 060-06


FECHA DE REPORTE:

I. DISEÑO DE MEZCLA

Descripción

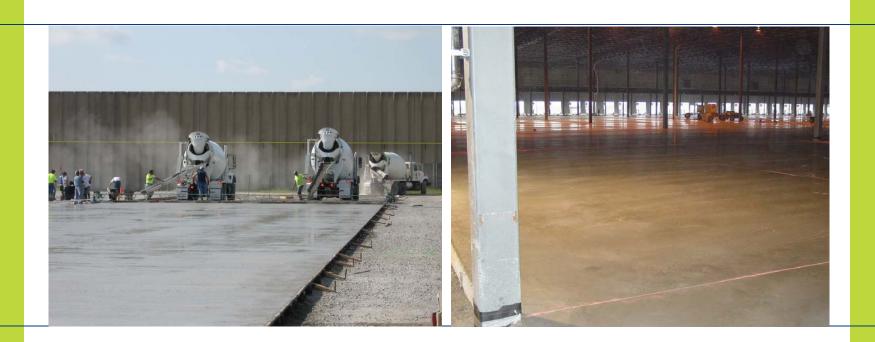
TUF STRAND SF

Hooked End Steel Fiber

Bridge Pier Rehabilitation (7kg/m³)

Berth Wall Rehabilitation (St. John, NB, Canada)

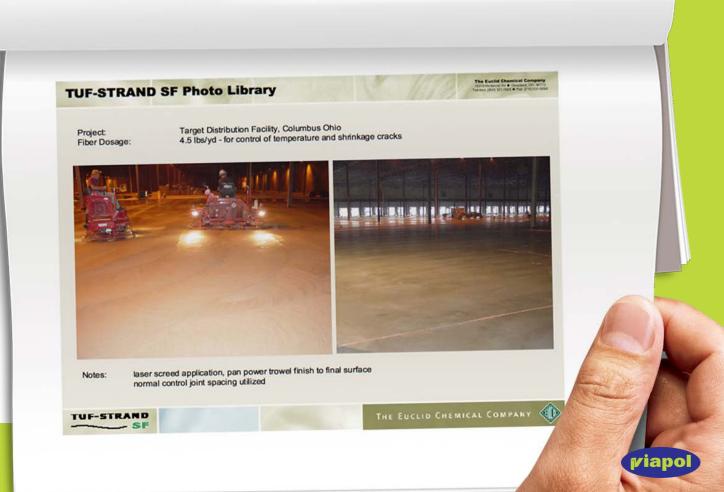
OBRAS REALIZADAS: YAMANA GOLD



FIBRAS TUF-STRAND EM CONCRETO PROJETADO REFLEXÃO DE APENAS 6%

FIBRAS TUF-STRAND EM PISOS INDUSTRIAIS

FIBRAS TUF-STRAND EM WHITETOPPING E OVERLAYS



FIBRAS TUF-STRAND EM CANALIZAÇÕES

OBRAS REALIZADAS

OBRAS REALIZADAS: BIANCA PARTICIPAÇÕES

OBRAS REALIZADAS: DELTA

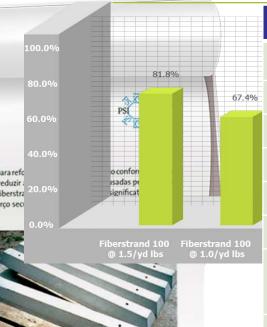
OBRAS REALIZADAS: UNILEVER

MICROFIBRA SINTÉTICA FIBERSTRAND

REDUÇÃO DA RETRAÇÃO PLÁSTICA EM RELAÇÃO AO CONCRETO SIMPLES

FIBERSTRAND Microfibra de polipropileno

DESCRIÇÃO


Fiberstrandé uma microfibra de polipropileno monofilamento para refo ASTM C1116. Fiberstrand foi projetada especificamente para reduzir : plástica do concreto nas primeiras horas. O uso da Microfibra Fiberstra desempenho e a durabilidade do concreto atuando como reforço seci reforços primários.

APLICAÇÕES

- · Estruturas pré-moldadas de concreto/argamassa;
- Concreto arquitetônico;
- Pisos industriais;
- Pavimentos Rodoviários;
- Capeamentos de compressão;
- · Calçadas.

CARACTERÍSTICAS E BENEFÍCIOS

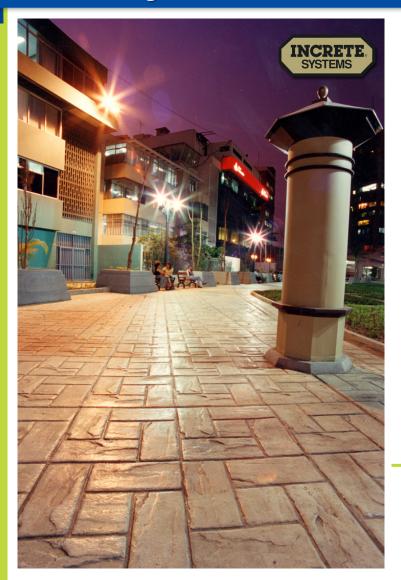
- · Maior controle da retração plástica;
- Reduz a segregação e a exsudação;
- Menor custo se comparado com telas soldadas para combate à retração;
- Não aflora e não altera o slump do concreto;
- Otima dispersão na mistura.

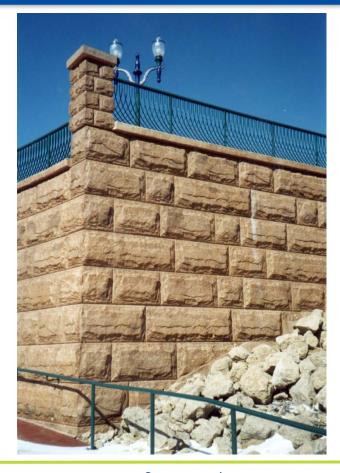
CARACTERÍSTICAS TÉCNICAS	
Material:	Polipropileno 100% virgem
Tipo:	Monofilamento
Densidade:	0,91 g/cm ³
Comprimento:	13mm
Absorção:	Nenhuma
Cor:	Branco
Resistência ao álcalis/ácidos	Excelente
Dosagens:	0,6 – 1,2 Kg/m ³

ACESSE NOSSO SITE PARA MAIORES INFORMAÇÕES

- MICROFIBRA SINTÉTICA FIBERSTRAND
- MACROFIBRA SINTÉTICA TUF-STRAND SF
- MACROFIBRA SINTÉTICA TUF-STRAND MAXTEN

Pisos e muros de concreto estampado

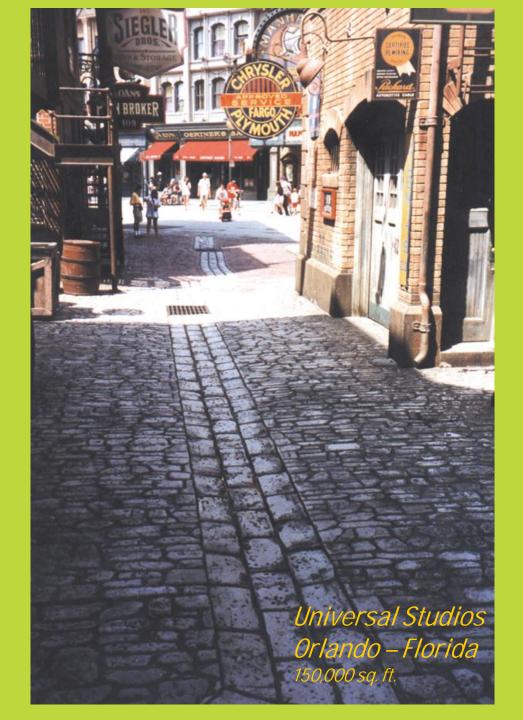


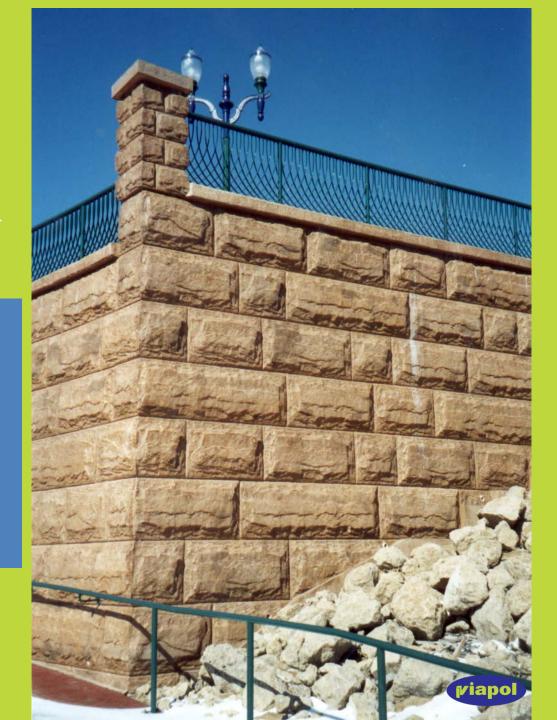


Click to edit Master subtitle style

INOVAÇÃO

Queremos ser a referência em **inovação e tecnologia** em produtos químicos para construção civil.



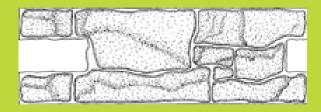


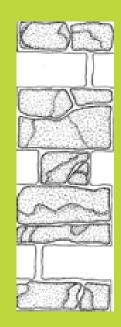
Stone-Crete

Architectural Formliner System

- Look of Hand Laid Stone
- Cast-In-Place System
- Structural/Load Bearing
- Fast Track Installation
- Patented Coloring Process
- Patented Keystone System

Stone-Crete Liners & Keystones

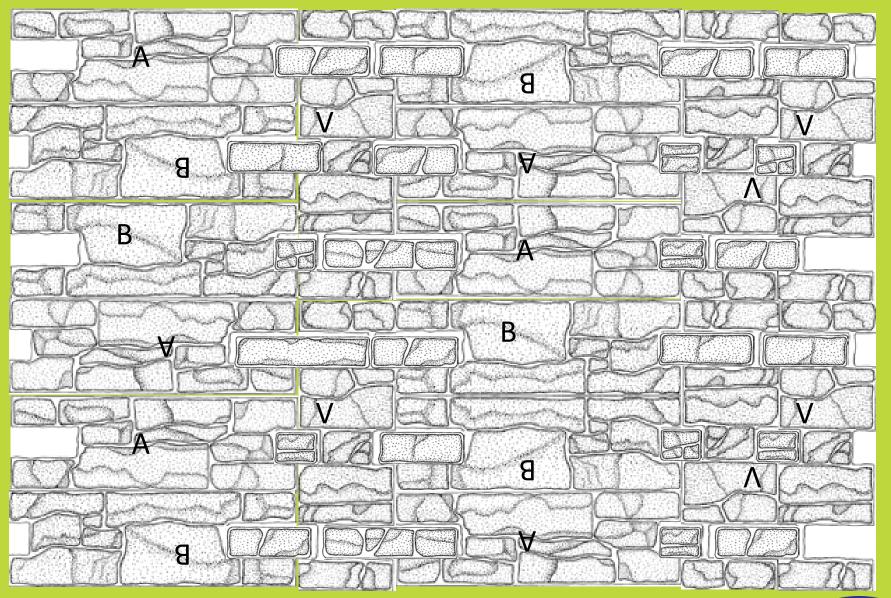



Stone-Crete Liners & Keystones

Sedona Horizontal A

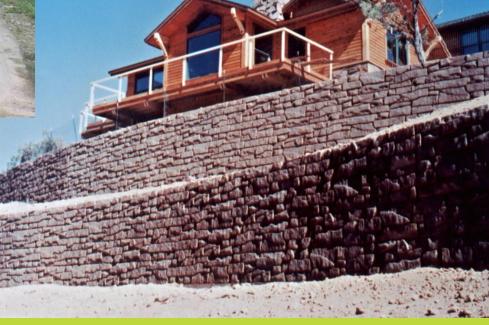
Sedona Horizontal B

Sedona Vertical



Sedona Keystones

Stone-Crete Liners & Keystones



Applications

Retaining Walls

COLOR-MATIC

CONCRETE COLORING SYSTEM

Liquid Integral Color for the

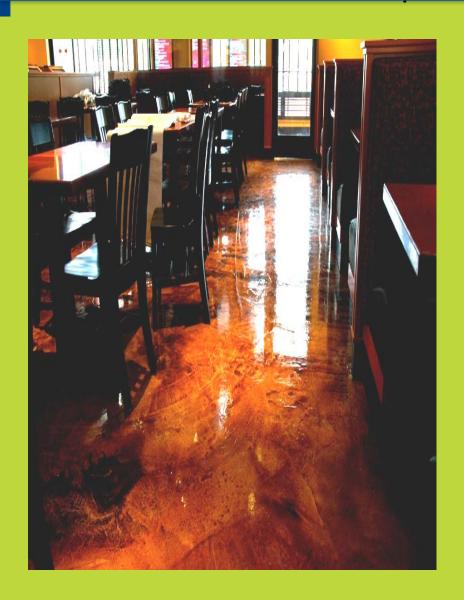
Concrete Industry

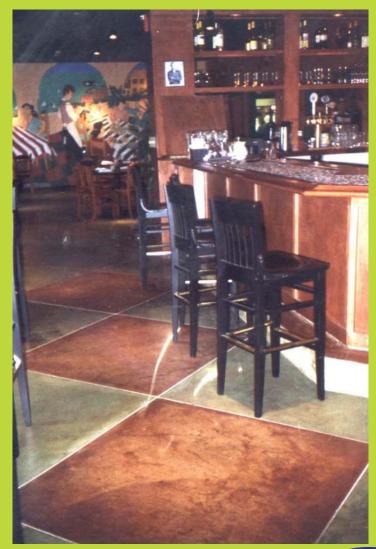
Presented By

INCRETE. SYSTEMS

Concreto colorido

Pisos cimentícios, com aplicação de stain (ácidos brandos) com acabamento em verniz de poliuretano





Pisos cimentícios, com aplicação de stain (ácidos brandos) com acabamento em verniz de poliuretano

Recomposição de pisos com argamassas poliméricas

Spray-Deck

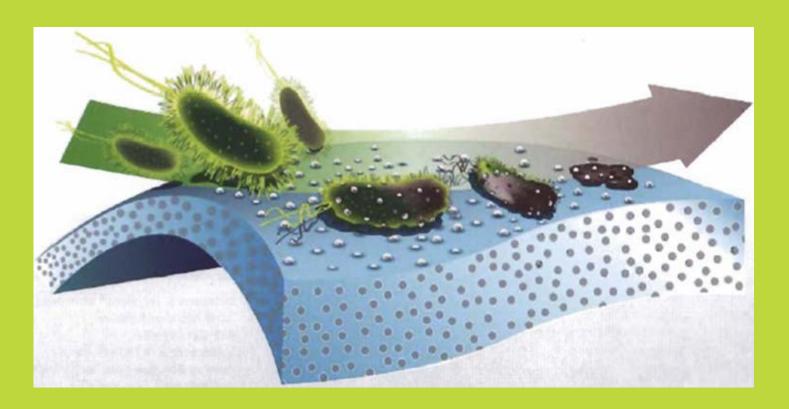
Pisos estampados Recuperação de pisos de concreto



Pisos industriais e decorativos

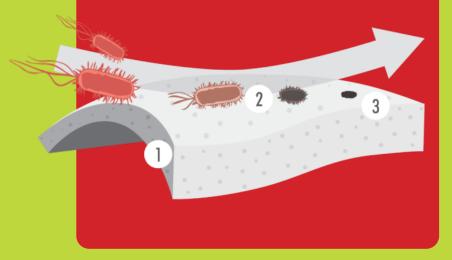
Queremos ser a referência em **inovação e tecnologia** em produtos químicos para construção civil.

Evolução e futuro do RAD


Revestimentos RAD com aditivos anti-microbianos Uso em formulações de RAD

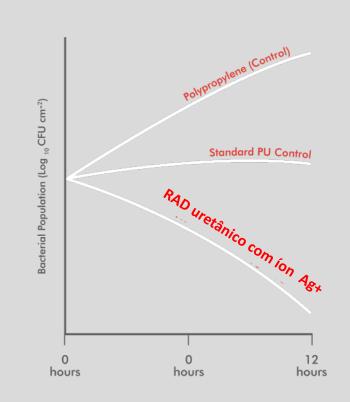
- Epóxi
- Cimentos uretânicos
- Poliuretano
- RAD Ultra Hygienic

RAD - Ultra Hygienic Ação Contínua Contra Contaminações na Indústria Alimentícia


Aditivo antibacteriano

- Mais eficientes à base de íon de prata, para revestimentos base resina epóxi, PU e cimentos uretânicos
- Reduzem a população de bactérias em até 99%.
 - E-coli
 - Listeria
 - Salmonela

- 1. Os íons são distribuidos homogeneamente no RAD.
- 2. Migram para a superfície.
- 3. Matam as bactérias ao penetrar na membrana celular.


Teste de controle:

- Após 60 ciclos de lavagem de uma base de polipropileno, a população de bactérias dobrou
- Após 60 ciclos de lavagem de uma base de RAD-cimento uretânico a população de bactérias permaneceu a mesma
- Após 60 ciclos de lavagem sobre uma base de RADcimento uretânico a população de bactérias reduziu 99,9%

JIS Z 280: 2000

Atividade microbial Após 60 ciclos de lavagem

RAD DE POLIURETANO FLEXÍVEL

Especificação - São indicados para:

Tráfego de Pedestre

Tráfego Veicular Médio

RAD DE POLIURETANO FLEXÍVEL

Especificação - Indicados para:

Tráfego Veicular Intenso

• Tráfego de Pedestre Decorativo

RAD DE POLIURETANO FLEXÍVEL

Estádios e centros esportivos

EVOLUÇÃO

