

Non-destructive Testing in Civil Engineering at BAM

Herbert Wiggenhauser BAM- Federal Institute for Materials Research and Testing Berlin, Germany

56° Congresso Brasileiro do Concreto, Natal, 2014

Campus Steglitz Unter den Eichen 87

- Non-Destructive Testing in Civil Engineering is a growing area
- It receives special attention after catastrophic failures (e.g. bridge collapse)
- The safety and reliability of the built infrastructure is one important foundation of industrial societies

Introduction (cont.)

- Reinforced concrete is the most widely used material for transportation infrastructure
- Assessment of existing structures are based on visual inspection
- Life time considerations for transportation infrastructure begin to play an important role
- Durability is mainly limited by poor quality construction
- NDT based quality control during construction is the future of NDT-CE

- Post-tensioned concrete structures form a very large part of transportation infrastructure
- There is a worldwide concern about the durability of PT concrete structures with grouting defects
- Testing of tendon ducts for grouting defects became a major research effort at BAM

Modeling of elastic and EM waves in concrete

- has become a fast and reliable tool
- contributed largely to the understanding of experiments and test settings
- 3D-objects can be simulated
- See the work of the group of Prof. K-J Langenberg

max=3.73263e-006

0.3

0.4

0.3

0.25

E 0.15

0.2

0.4

Modelling of Elastic Waves: e.g. Ultrasonic Phased Array

Visualization of the wave propagation

Ζ

Sound beam control using a phased array

KBAM

Reconstruction of 1D- and 2D-scanned data sets

- SAFT (synthetic aperture focussing technique) has become a standard data analysis tool
- 3D reconstruction of large data sets possible in minutes (compare to weeks 10y ago)
- Data evaluation and reconstruction is being done during testing on site

Recent Advances

New US Device with Dry Coupling

Transmission 12 Shear Wave Transducers

Reveiving 12 Shear Wave Transducers

Frequeny Range: Max Depth Range:

33 kHz - 250 kHz 700 mm (B35)

Min Size of Defect for 500 mm Depth:Air filled cylinder:12 mmAir filled sphere:55 mm

Accuracy: +/- 10% Power supply:

Battery

Dimensions: Handheld: Sensor:

235 x 98 x 33 mm 145 x 90 x 75 mm

Weight:

Handheld Sensor: 0,8 kg 0,76 kg

Dust and Water Class: Schutzart IP65

[■]Recent A<u>dvances</u>

US Linear Array for Concrete (Sampling Phased Array)

KBAM

Scan Sequence 10 – duration: 350 ms

Averaging possible. Transfer time of data to control unit: 500 ms Reconstruction time <3 sec

Ultrasonic Phased Array MIRA

Different radar antenna frequencies

B-Scans measured with both antennas at the test specimen number 2

Data Fusion of Radar and Ultrasonic Measurements

C-Scans in different depths of the test specimen number 2:

14 cm

11 cm

50 cm

Testing problems for concrete elements

- Measuring the thickness and geometry
- Localisation and concrete cover of metal tendon ducts
- Localisation of inhomogeities in and around the tendon ducts (grouting faults)
- Localisation of compaction faults and honeycombing in concrete
- Localisation of delaminations in multilayered structures
- Crack characterisation (crack depth measurement)
- Quality assurance of construction

Bridge investigations applying NDT-CE

Bridge deck: Full field investigation 8 Measuring field for detailed investigation with Radar, Ultrasonic echo, impact-echo, (magnetic stray field) (1999)

> **Girder and Bridge deck:** Scanning Echo methods for tendon ducts and honeycombing (2001)

New: Large field investigation with automated scanning system for echo methods (2003)

The BAM Site for NDT-CE test and validation

- Dedicated to research, test, validation, education
- High quality 1:1 test specimen and real objects
- Piles, slabs, concrete railway track, bridge parts,....
 - Long term availability
 - open f
 ür partners from academia and industry

What's new

 Real bridge parts, containing tendon ducts and delaminations

3 box girders (L = 6-12 m) 3 slabs (5-10 m²)

What's new

1:1 model of secant pile wall (checking joints by crosshole sonic logging)

see separate presentation

What else in 2009

Facility upgrade (office , lab, data connections...

Tasks in 2010

- Sheet piles (length and shape)
- Piles under slab (load, length and integrity)
- Reinforced concrete wall (thickness, rebar location)

Large Concrete Slab (LCS) at BAM

1. Section - Tendon ducts

11 Tendon ducts with strands (length 4 m, diameter 40 ... 100 mm) Grouting defects, Grouting by DSI

Facility for various tests and measurements for the improvement of NDT-CE methods

Reference specimen for comparison of different methods (=>validation)

2. Section - Voids and auxiliary devices

Voids:

Compaction faults (gravel pockets)

Auxiliary elements:

- Inlet for water and salt-solution through a tube from the bottom side into high porosity structure
- Thermoelements (for Thermography)
- Stainless steel-plate for backside reflection calibration
- Plastic tubes (for Radiography)

Automation and Scanning

Scanning Systems

1.6 m x 10 m

Scanning Area Speed:

Ultrasonic Echo/Impact Echo 1m²/h, 0.02 m point grid

Radar 15m²/h, 0.05 m line grid

2-dimensional measurement on the surface of structures

B-Scan

plots perpendicular to the measurement surface (x-y plane)

C-Scan

plots parallel to the measurement surface (x-y plane)

Projections and Animations of consecutive scans

3D-Reconstruction

Focusing of reflected signals using SAFT (Synthetic Aperture Focusing Technique)

Data Fusion

Superposition of data

Impulse Echo Principle

Electro-Magnetic Method Radar

- Reflections at interfaces of materials with different dielectric properties
- Antenna of 900 MHz and 1.5 GHz

(1)

(2) Acoustic Methods Ultrasonic Echo/ Impact-Echo

Reflections at interfaces of materials with different acoustical properties

Ultrasonic Measurement Device

Shear waves

- center frequency of 50 kHz
- Measurement head
 - 24 point-contact transducers
 - without coupling agent

Impact-Echo Measurement Device

- Frequency range
 - from 1Hz to 40 kHz
- Frequency spectrum analysis
 - multiple reflections (recorded in the time domain)

RADAR: Raw radargram of a long trace

Ultrasonic echo

Point contact transducer

BAM 8.2

bast

Application at post-tensioned concrete bridge Large Area Investigation (Scanner)

Construction

Cantilever unicellular box bridge Length: 480 m Prestressed in longitudinal and transversal direction Constructed 1966, deconstruction 2004

Querschnitt Brückenkasten

- Radar
- Impact-Echo
- Ultrasonic Echo

Results

Measurements on a post-tensioned bridge deck

Test Area on the top: 4.0 m x 10.0 m Test Area on the bottom: 3.0 m x 10.0 m

- tendon ducts with diameters of 45 mm, each with 6 wires
- thickness of the deck 23 38 cm

Bridge deck: Superposition of radar data from the top side and bottom side (Polarization in x- und y-direction, maximum of magnitude is represented) Movie of slices parallel to the surface:

Radar-Visualization of the Results as 3D-Animation

Duct investigation (Impact-Echo)

Bridge deck top side: C-Projection close behind the back wall

Ultrasound: Duct investigation

Bridge-deck: Destructiv testing: 35 cores, endoscopy

Bridge deck (transverse tendon ducts): Very good grouting condition

Box girder wall (longitudinal tendon ducts)

Measurements on webs of box girder bridges

thickness of the web 50 cm
 (83 cm in the area of anchoring of the pre-stressing)

bridge under unaffected traffic

Test Area: 10 m (length) x 1.5 m (height)

 simultaneous mounting of the impact-echo and ultrasonic sensors on the scanner

Data Fusion of Radar and Ultrasonic Echo

3D-reconstructed and fused radar data sets (1.5 GHz-antenna) and 3D-reconstructed ultrasonic echo data set

Animated sections parallel to the surface through the measurement depths from 0 cm to 60 cm

Ultrasonic Echo

SAFT-C-Projection parallel to the measurement surface at the range of depth from 22 cm to 28 cm

Ultrasonic Echo

Measurements on a bridge deck, pre-stressed in longitudinal direction

Test Area on the bottom side of the deck, 0.96 m x 18.40 m:

ultrasonic echo measurements were done in 23 scanning areas length of 2 m x 0.40 m

Ultrasonic Echo

SAFT-C-Projection in the depth range of z = 200 - 400 mm

Right: SAFT-B-Projection about the whole length of 18.40 m

Evaluation of the Intensity of Ultrasonic Echo-Signals

SAFT-B-Projection about the range with the tendon duct 2

Pulse Behaviour of Ultrasonic Echo-Signals

Reflections on steel in concrete

→ No transfers of phase

Reflection on air-inclusions in concrete

Transmitted pulse

Reflected pulse

[→] Transfer of phase

Evaluation of Pulse Behaviour of Ultrasonic Echo-Signals

SAFT-B-Projection (Phase)

Top: about y=1940-2100 mm, Down: about y=1828-1926 mm (tendon duct 2)

Vielen Dank! Thank you!

Vienna City Administration

Research group supported by the DFG (Deutsche Forschungsgemeinschaft)

ASFINAG

bast

ASV Fulda

U N I K A S S E L V E R S I T 'A' T

Zerstörungsfreie Schadensdiagnose und Umweltmessverfahren BAM

and many others ...