

Prof. Børge Johannes Wigum Engineering Geologist

Alkali Aggregate Reactions (AAR)

Børge Johannes Wigum

HEIDELBERGCEMENTGroup

Concrete durability

Pantheon, Rome 27 BC - 124 AD

Height 43 meters

The Atlantic Road - Norway

Geothermal water plant - Iceland

Alkali Aggregate Reactions AAR

ASR – Alkali Silica Reaction
ACR – Alkali Carbonate Reaction

Headlines of today:

• WHAT is AAR ?

- Mechanisms
- Cases
- **HOW** to diagnose AAR in existing structures !
- <u>**How</u>** to prevent AAR in future structures !</u>
 - Mitigating AAR
 - Test methods
 - Regulations

The path forward – the future !

What is AAR?

Alkali Aggregate Reactions (AAR)

- Alkalies producing a silica-gel by dissolving soluble SiO₂ (e.g. Quartz) in the aggregate.
 - Gel has hygroscopic properties, leading to expansion under moist conditions.
- 5-50 years, depending on the type of aggregate and environmental conditions

Consequences

Expansion and (map) cracking Constraining forces

Reduced capacity

Influence on material properties

- Reduced capacity

Initialize other deterioration mechanisms

Frost damage

- Rebar corrosion

Mechanisms of AAR

Reactive aggregates

Neccessary parameters

Alkalies

(usually supplied by the cement, although external sources can exist).

Water (or high moisture content)

Chemistry of AAR

The attack of alkali on:

- (A) well crystallized silica
- (B) poorly crystallized hydrous silica

Crystall structure affecting the reactivity

Elgeseter Bridge Trondheim, Norway

- Built 1949-51
- Length 220 m
- Width 23 m
- Height 17 m

- Most cracked west side
- Cracks 0,25 mm/year
- In-situ measurement of RH

Installation of new columns

200 mm

1

Confinement with Carbon Fibre Reinforcement Polymers (CFRP)

Bridge Norway

Bridge Northern Norway

1.1

.1

Dam Norway

Switzerland

Bridge Canada

How to diagnose AAR in existing structures ?

Sampling concrete cores

Fluorescence impregnated plane section

Damaging Rate Index (DRI)

Thin-section examination

Cement paste

AAR in thin-section

Aggregate particle unstable in alkali environment in the concrete

Silica in aggregate particle dissolve and produce alkali gel

> Alkaligel is very hygroscopic expands – make cracks in particles and concrete

0,2 mm

plane polarized light (PPL)

fluorescent light (PPL)

How to prevent AAR in future concrete structures ?

Mitigating AAR

- Limit the total alkali content of the concrete mix;
- Use a non-reactive aggregate combination;
- Limit the degree of saturation of the concrete with water

Other measures:

- Fly ash replacing up to 30% of the Portland cement (by mass)
- <u>Natural pozzolanic materials</u> with low lime content (<2% CaO)
- <u>Silica fume</u> 4-6% (Iceland)
- Ground granulated blast furnace slag (<u>GGBFS</u>) (50% by mass)
- Lithium amount can be high and varies depending on the aggregate

Test methods

Test methods by RILEM

- Three successive Technical Committees (TC)
- Initially focused on accelerated tests for aggregate reactivity
- Extended to :
 - Specification
 - Diagnosis and assessment
 - Appraisal and repair
 - Modelling of structures
 - Performance testing
 - Releasable alkalis in aggregates
 - Petrographic atlas

International Union of Laboratories and Experts in Construction Materials, System and Structures

Test Methods

- 1. Petrographic examination (RILEM AAR-1) [ASTM 295]
- 2. Accelerated mortar bar test (RILEM AAR-2) [ASTM 1260]
- 3. Concrete prism tests (RILEM AAR-3 & 4) [ASTM 1293]

- Performance testing
- Field exposure sites

The petrographic metod (RILEM AAR-1)

Petrographic Atlas with Micrograph examples;

www.farin.no

Accelerated Mortar Bar Test (RILEM AAR-2)

1N NaOH – 80°C – 14 days bars 25 x 25 x 285mm

Used as a performance test ?

Concrete Prism Tests

prisms 75 x 75 x 285mm

RILEM AAR-3 RILEM AAR-4

RILEM AAR-3, AAR-4, (ASTM C 1293 & Norwegian method)

- 38°C or 60°C
- Wrapped (W) or Unwrapped (U) prisms
- Prism cross section: 70 mm or 100 mm
- All methods: prisms stored on grids over water (~100 % RH)

RILEM AAR-4.1 "Standard"

RILEM AAR-3 RILEM AAR-4.1 "Alternative"

ASTM-C1293 Norwegian

RILEM AAR-3 100%Rh – 38°C – 1 year

RILEM AAR-4

100%Rh – 60°C – 20 weeks

Parameters affecting expansion

- Wrapped or unwrapped
- **Temperature** (38°C 60°C 80°C)
- Prism size
- Preconditions, curing etc.

Jan Lindgård		
Alkali-silica react	tion (ASR) – Performance	
testing		
Thesis for the degree of doctor philo	osophiae	
Trondheim, October 2013		
Norwegian University of Science and		
Faculty of Natural Sciences and Tech Department of Materials and Science		

Parameters affecting expansion

Expansion primarily controlled by rate and extent of alkali leaching ! Larger prism cross-section: less alkali leaching

Performance testing; lab. vs. field Comparing apples and pears?

The outcome of accelerated laboratory tests may depend on the extent of <u>leaching</u> of alkalis.

Exposure Sites

Dusseldorf - Germany

10

Ě

at.

National Recommendations

In the European aggregate standard, EN 12620:2002, it is stated;

"When required the alkali-silica reactivity of aggregates shall be assessed in accordance with the provisions valid in the place of use and the results declared".

National Recommendations

How to produce durable concrete with alkalireactive aggregates

Overview of critical limits for test methods for documentation of alkalireactivity of singel aggregates or blends of aggregates

	Critical limits for laboratory test methods		
Documentation of	Petrographic analysis (1)	Accelerated mortar bar method (2)	Concrete prism method (3)
Fine aggregate and blend of fine	20.0 %	0.14 %	0.040 %
Coarse aggregate and blend of coarse		0.08 %	0.040 %
Fine coarse aggregate		0.11 %	n/a
Blend of a fine- and coarse aggregate, where the fine or coarse is alkali-reactive	20.0 %	0.11 %	0.050 %

Performance testing – Norwegian Concrete Test

 Binders tested with a specified highly reactive Norwegian aggregate combination (worst case); increasing alkali content.

Expansion (%)

Determination of acceptance limit for alkali content

Requirements for maximum allowed alkali content for production of non-reactive concrete when using alkali reactive aggregate (worst case)

Binder	Limit, alkali-content
Norcem Standard FA Cement [CEM II/A-V, NS-EN 197-1, flyash > 17 %]	Na_2O eq. ≤ 7.0 kg/m ³
Portlandcement + silica fume [CEM I, NS-EN 197-1 in combination with minimum 10 % silica fume (of cement weight)]	$Na_2O eq \le 5.5 kg/m^3$

The path forward – The future

RILEM deliverables

- AAR-1 Petrographic method
 - Petrographic Atlas (AAR-1.2)
- AAR-2 Accelerated mortar bar test
- AAR-3 Concrete prism test (38°C)
 - Performance test (AAR-3.3)
- AAR-4.1 Accelerated concrete prism test (60°C)
 - Performance test (AAR-4.2)
- AAR-5 Screening test for carbonates
- AAR-6.1 Diagnosis & Prognosis
- AAR-6.2 Appraisal & Repair
- AAR-7.1 ASR specification
- AAR-8 Releasable alkalis
- AAR-9 Modelling of structures

RILEM New TC (?)

- 2014 ?
- Implementation of results & methods
 - Performance testing
 - Releasable alkalies
- Specification for very long term reactions in massive structures like dams follows liaison with ICOLD
- Web-based communication
- Chaired by BJW

ICRAT

International Centre of Research and Applied Technology for Alkali Aggregate Reactions

"Reducing the risks and minimising the consequences of expansive Alkali Aggregate Reactions in concrete"

www.mannvit.com/TestingResearchLab/

International Conference on Alkali Aggregate Reactions (ICAAR)

Chairman: Haroldo Bernardes

www.ibracon.org.br/icaar2016