

Life-Cycle Reliability Assessment of Concrete Bridges Exposed to Corrosion

Fabio Biondini

Department of Civil and Environmental Engineering, Politecnico di Milano

Aging and Deterioration of Bridges

- The life-cycle performance of bridge and infrastructure systems is affected by time-variant deterioration effects of aging and damage processes of materials and components.
- Deterioration mechanisms are generally complex and their effects over time depend on both the damage process and type of materials and structures.
- For concrete bridges the main sources of damage include chemical processes associated to sulfate and chloride attacks and alkali-silica reactions, physical processes due to freeze/thaw cycles and thermal cycles, and mechanical processes such as cracking, abrasion, erosion, and fatigue.

Deterioration Processes

(Clifton and Knab 1989)

2013 REPORT CARD FOR AMERICA'S INFRASTRUCTURE

"In total, **one in nine of the nation's bridges** are rated as **structurally deficient**, while the **average age** of the nation's 607,380 bridges is currently **42 years**."

WWW.INFRASTRUCTUREREPORTCARD.ORG

Italian Networks:

- > Railways 16,000 km
- > Highways 3,400 km
- > Roads 26,700 km

Life-Cycle Probabilistic Approach

- The condition rating of stocks of existing bridges and infrastructure networks indicates that the economic impact of deterioration is exceptionally high and emphasizes the importance of proper maintenance and repair of structurally deficient bridges.
- These problems present a major challenge to bridge engineering, since the classical time-invariant structural design criteria and methods need to be revised to account for a proper modeling of the structural system over its entire life-cycle by taking the effects of deterioration processes, time-variant loadings, maintenance actions and repair interventions into account.
- In addition, because of the uncertainty in material and geometrical properties, in the physical models of deterioration processes, and in the mechanical and environmental stressors, a measure of the time-variant performance is realistically possible only in probabilistic terms.

- In recent years, relevant advances have been accomplished in the fields of modeling, analysis, design, maintenance, monitoring, and management of deteriorating bridges.
- Despite this research trend, life-cycle concepts are not yet explicitly addressed in design codes and the checking of system performance requirements is referred to the initial time of construction when the system is intact.
- In this approach, design for durability of concrete structures with respect to chemical-physical damage phenomena is based on simplified criteria associated with classes of environmental conditions.
- Such criteria introduce threshold values for concrete cover, watercement ratio, amount and type of cement, among others, to limit the effects of local damage due to carbonation of concrete and corrosion of reinforcement.

Model Code for Service Life Design fib Bulletin No. 34, 2006, pp. 116

- 1. General
- 2. Basis of design
- 3. Verification of Service Life Design
- 4. Execution and its quality management
- 5. Maintenance and condition control

- A durable design cannot be based only on indirect evaluations of the effects of structural damage (material quality, concrete cover, etc.), but also needs to take into account the global effects of the local damage phenomena on the overall performance of the structure.
- A global approach to life-cycle assessment and design of concrete bridges under damage should consider, among others:
 - The quality of structural detailing
 - The type of structural scheme
 - The interaction of mechanical and environmental stressors
 - The effects of maintenance and repair interventions

Life-Cycle Prediction Models

Aggressive Environment

- Structure and Infrastructure Engineering, First, 2013
- Structure and Infrastructure Engineering, 7(1-2), 2011
 - Structural Safety, 31, 2009
 - Structure and Infrastructure Engineering, 4(5), 2008
 - Probabilistic Engineering Mechanics, **23**(4), 2008
- Structural Engineering International, IABSE, 16(3), 2006
- Journal of Structural Engineering, ASCE, 132(5), 2006
- Journal of Structural Engineering, ASCE, 130(11), 2004

Research Cooperation

POLITECNICO DI MILANO

11

Fabio Biondini – 55th CBC 2013

- Modeling of Structural Damage
- Nonlinear Analysis of Deteriorating Concrete Structures
- Simulation of Diffusion Processes
- Time-variant Performance and Lifetime Assessment
- Effects of Repair Interventions
- Life-Cycle Cost and Maintenance Planning

Conclusions

Uniform Corrosion

$$p = 2x \qquad \delta = \frac{p}{D_0}$$

$$A_{s}(\delta) = [1 - \delta_{s}(\delta)] A_{s0}$$
$$A_{s0} = \pi \cdot D_{0}^{2} / 4$$
$$\delta_{s} = \delta(2 - \delta)$$

Pitting Corrosion

$$R = \frac{x_{\max}}{\overline{x}}$$

$$R = 4 - 8 \text{ (natural corrosion)}$$

$$R = 5 - 13 \text{ (accelerated corrosion)}$$

$$P = x_{\max}$$

$$\delta_s = \begin{cases} \delta_{s1} + \delta_{s2} & 0 \le \delta \le 1/\sqrt{2} \\ 1 - \delta_{s1} + \delta_{s2} & 1/\sqrt{2} \le \delta \le 1 \end{cases}$$

$$\delta_s = \delta(2 - \delta)$$

$$\delta_s = \delta(2 - \delta)$$

$$\delta_{s1} = \frac{1}{2\pi} (\theta_1 - 2\beta | 1 - 2\delta^2 |)$$

$$\delta_{s2} = \frac{2\delta^2}{\pi} (\theta_2 - \beta) \quad \beta = \frac{b_0}{D_0} = 2\delta \sqrt{1 - \delta^2}$$

Reduction of Steel Ductility

Fabio Biondini – 55th CBC 2013

POLITECNICO DI MILANO

Deterioration of Concrete (1/2)

16

Fabio Biondini – 55th CBC 2013

Deterioration of Concrete (2/2)

Fabio Biondini – 55th CBC 2013

Deteriorating R.C. Beam Element

Isoparametric Sub-Domains

$$I = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta, \zeta) d\xi d\eta d\zeta = \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{n} w_{i} w_{j} w_{k} f(\xi_{i}, \eta_{j}, \zeta_{j})$$

Fabio Biondini – 55th CBC 2013

POLITECNICO DI MILANO

Numerical Validation – Beams

(Rodriguez et al., 1997)

Parameter	Beam	Beams	Beam	Beams	Parameter	Φ 8 bars	$\Phi 10$ bars	$\Phi 12$ bars
	111	114-116	311	313-316	f nm	615	575	585
fcc [MPa]	50	34	49	37	J _{sy} [MPa]	673	655	673
f_{ct} [MPa]	4.1	3.1	4.1	3.2	J _{su} [MPa] F	210	210	210
E_{c} [GPa]	37.3	33.8	37.1	34.5	L _s [GPa]	210	210	210

Fabio Biondini – 55th CBC 2013

Numerical Validation – Corrosion

Mean penetration depth [mm] (maximum value)							
Beam	Tension bars	Compression bars	Stirrups				
114	0.45 (1.1)	0.52	0.39 (3.1)				
115	0.36 (1.0)	0.26	0.37 (3.0)				
116	0.71 (2.1)	0.48	0.66 (5.0)				
313	0.30 (1.3)	0.20	0.35 (2.8)				
314	0.48 (1.5)	0.26	0.50 (4.0)				
316	0.42 (1.8)	0.37	0.54 (4.3)				

Numerical Validation – Results

Numerical Validation – Results

24

Validation under Natural Corrosion

- Simply supported beam L=2.80m under concentrated load at midspan
- Cross-section 150x280mm, $2\phi16 + 2\phi12$, cover 10 mm
- > Material strengths $f_c = 65$ MPa and $f_v = 500$ MPa
- Exposed to natural environment for 14 years

Fabio Biondini – 55th CBC 2013

Damage Modeling

Fabio Biondini – 55th CBC 2013

Corrosion Rate

Fabio Biondini – 55th CBC 2013

Fick's second law (1D, 2D, 3D)

 $\nabla^2 C = \frac{1}{D} \cdot \frac{\partial C}{\partial t}$ C = Concentration D = Diffusivity t = Time

Simplified approach – Solution of the 1D problem

$$C(x,t) = C_0 \left[1 - erf\left(\frac{x}{2\sqrt{D t}}\right) \right]$$

Model Code for Service Life Design fib Bulletin No. 34, 2006

28

Validation of the Diffusion Model

Fabio Biondini – 55th CBC 2013

Validation of the Diffusion Model

Fabio Biondini – 55th CBC 2013

30

Coupling between Diffusion and Damage ³¹

Stochastic Effects and Evolutionary Rule

$$D = (1 + \Psi) \cdot D_0$$

- (A) Symmetrical
 Ψ–Distributions
 in Uncracked Concrete
- ▶ (B) Skewed
 Ψ-Distributions
 in Cracked Concrete

Continuous T-Beam

Diffusion and Mechanical Damage

Life-Cycle Performance

> A structure is **safe** when the effects of the **applied actions** *S* are no larger than its **resistance** R:

$R \ge S$

or when the *safety factor* $\Theta = R / S$ is no lower than unity:

$$\Theta \ge 1$$

Probability of Failure and Reliability Index³⁶

> The **probability of failure** P_F , or the **reliability index** β , can be evaluated by the integration of the **density function** $f_{\Theta}(\theta)$ within the **failure domain** *D*:

$$P_F = P(\Theta < 1) = \int_D f_{\Theta}(\theta) \,\mathrm{d}\,\theta = \Phi(-\beta)$$

$$D = \left\{ \theta \mid \theta < 1 \right\}$$

Fabio Biondini – 55th CBC 2013

POLITECNICO DI MILANO

POLITECNICO DI MILANO

Biondini, F. & Frangopol, D.M. 2008. Probabilistic Limit Analysis and Lifetime Prediction of Concrete Structures, *Structure and Infrastructure Engineering*, **4**(5), 399-412.

Fabio Biondini – 55th CBC 2013

POLITECNICO DI MILANO

Characteristics of the Cross-Sections

Span	1	2	3	4	5	6	7	8	9
A_{s}'	21Ø28	48Ø28	42Ø28	30Ø28	24Ø28	48Ø28	48Ø28	45Ø28	33Ø28
	130Ø8								
$\overline{A_s}$	21Ø28	30Ø28	42Ø28	24Ø28	24Ø28	21Ø28	36Ø28	27Ø28	24Ø28

Characteristics of the Cross-Sections

Fabio Biondini – 55th CBC 2013

POLITECNICO DI MILANO

Limit Analysis of the Bridge

Concentration Maps

Time-variant Performance

t = 0 years

t = 50 years

Seismic Capacity Design

Biondini F., Palermo A., Toniolo G., 2011. Seismic Performance of Concrete Structures Exposed to Corrosion: Case Studies of Low-Rise Precast Buildings, *Structure and Infrastructure Engineering*, **7**(1-2).

Variable	Distribution Type	μ	σ
$(\Delta x, \Delta y)$	Normal	0	50 mm
k	Lognormal	$k_{ m nom}$	$0.20 k_{\rm nom}$
g	Normal	$g_{ m nom}$	$0.10 g_{\rm nom}$
p	Normal	$p_{\rm nom}$	$0.40 p_{\rm nom}$

Probabilistic Lifetime Assessment

Design Lifetime

Fabio Biondini – 55th CBC 2013

POLITECNICO DI MILANO

Bridge over the Breggia river (Cernobbio, Italy)

Concrete Spalling

Steel Corrosion

Deck Deterioration

Structural Model

Arches

Concentration Maps : Arches

12 years25 years37 years50 yearsActual State

Concentration Maps: Ties

12 years25 years37 years50 yearsActual State

Fabio Biondini – 55th CBC 2013

POLITECNICO DI MILANO

Concentration Maps: Deck

Aggressive Agent under the Deck

Actual State

POLITECNICO DI MILANO

Diffusion vs Damage

Deck

Ties

POLITECNICO DI MILANO

Nepair Intervention

POLITECNICO DI MILANO

Certosa Cable-Stayed Bridge

Biondini, F., Frangopol, D.M. & Malerba, P.G. 2006b. Time-variant Performance of the Certosa Cable-stayed Bridge. *Structural Engineering International*, IABSE, **16**(3), 2006, 235-244

Deck Cross-sections

Skewed cross-section on the transversal beam.

Fabio Biondini – 55th CBC 2013

Nepair Interventions

The concrete cover has been restored by a multilayered repair in order to protect the structure from future diffusive attacks of external aggressive agents.

(1) Sandblasting.

(2) Local sutures with tixotropic, anti-shrinkage, polypropylene fiber reinforced mortar.

(3) Skin protection with high adhesion and high elasticity sealing cement mortar, reinforced with double or simple skin mesh.

Structural Model and Exposure Scenario 65

Fabio Biondini – 55th CBC 2013

Time-variant Performance

Random Variable ($t=t_0$)	Туре	μ	σ
Concrete strength f_c	Lognormal	$f_{c,nom}$	5 MPa
Steel strength f_{sy}	Lognormal	$f_{sy,nom}$	30 MPa
Coordinates of the nodal points (y_i, z_i)	Normal	$(y_i, z_i)_{nom}$	5 mm
Coordinates of the steel bars (y_m, z_m)	Normal	$(y_m, z_m)_{nom}$	5 mm
Diameter of the steel bars \emptyset_m	Normal	$\emptyset_{m,nom}$	$0.10 \varnothing_{m,nom}$
Diffusivity coefficient D	Normal	D_{nom}	$0.10 D_{nom}$
Concrete damage rate q_c	Normal	$q_{c,nom}$	$0.30 \; q_{c,nom}$
Steel damage rate q_s	Normal	$q_{s,nom}$	$0.30 \; q_{s,nom}$

Probabilistic Time-variant Performance

Damaged Structure

Rehabilitated Structure

Maintenance Costs

$$\beta(t) = \beta_0(t) + \sum_{i=1}^n \Delta \beta_i(t)$$

 $C_i = \alpha \, \Delta \beta_i$

- > $\Delta \beta_i$ = modification of the reliability index associated with the intervention *i*=1,...*n* applied at time t_i
- \succ $C_i = \text{Cost of the intervention } i$ at time t_i
- \succ $C_{0i} = \text{Cost } C_i$ referred to the initial time t_0
- \succ v = Discount rate

Biondini, F., Bontempi, F., Frangopol, D.M. & Malerba, P.G. 2006. Probabilistic Service Life Assessment and Maintenance Planning of Concrete Structures, *Journal of Structural Engineering*, ASCE, **132**(5).

Bridge Axis 600 820 cm 60 20 110 40 50 40 130 (8**+**8)∳18 46 46 45 46 107.5 46 Bridge Pier Reinforced with a Total of

110 20 60

 $160 \phi 18 + 248 \phi 30 = 408 Steel Bars$

Structural Model and Exposure Scenario ⁷²

Concentration Maps

73

Nesistance Domains M_y - M_z

Fabio Biondini – 55th CBC 2013

74

Probabilistic Model

Random Variable ($t=t_0$)	Туре	μ	σ
Concrete strength f_c	Lognormal	$f_{c,nom}$	5 MPa
Steel strength f_{sy}	Lognormal	$f_{sy,nom}$	30 MPa
Coordinates of the nodal points (y_i, z_i)	Normal	$(y_i, z_i)_{nom}$	5 mm
Coordinates of the steel bars (y_m, z_m)	Normal	$(y_m, z_m)_{nom}$	5 mm
Diameter of the steel bars \emptyset_m	Normal	$\emptyset_{m,nom}$	$0.10 \varnothing_{m,nom}$
Diffusivity coefficient D	Normal	D_{nom}	$0.10 D_{nom}$
Concrete damage rate q_c	Normal	$q_{c,nom}$	$0.30 \ q_{c,nom}$
Steel damage rate q_s	Normal	$q_{s,nom}$	$0.30 q_{s,nom}$

Maintenance Scenarios

 $\min\left\{C(\Delta\beta,\Delta t) \mid \beta \geq \beta_{t \, \text{arg} \, et}\right\}$

Fabio Biondini – 55th CBC 2013

POLITECNICO DI MILANO

77

Damage processes in concrete bridges are usually investigated based on simplified models of diffusion processes and through the study of the local deterioration of the materials, concrete and steel, with limited attention paid to the global effects of these local phenomena on the overall performance of the structural system.

This is clearly not consistent with the actual nature of the problem, since the simulation of diffusion processes should be able to account for complex geometrical and mechanical boundary conditions, which generally characterize engineering applications.

Moreover, the local deterioration mechanisms interact with the global structural response. As a consequence, the structural scheme plays a fundamental role in the assessment of deteriorating structures, particularly for redundant systems, where damage may lead to timevariant redistributions of the internal actions. These aspects can be consistently taken into account by means of the proposed general methodology for life-cycle reliability assessment, maintenance and rehabilitation of concrete structures exposed to the diffusive attack from environmental aggressive agents, with emphasis on concrete bridges under corrosion.

> The proposed **probabilistic formulation** allows:

1. To evaluate the **time-variant structural reliability** or, conversely, the **remaining service life** which can be assured under prescribed reliability levels without maintenance (**ASSESSMENT**).

2. To plan a **rehabilitation of the structure** in order to achieve a prescribed target value of the service life (**REHABILITATION**).

3. To select an **optimal maintenance scenario** among different economic alternatives (**MAINTENANCE**).

IABMAS Italy Group

Foundation Meeting

IABMAS 2012 – The Sixth International Conference on Bridge Maintenance, Safety and Management Stresa, Lake Maggiore, Italy | July 9th, 2012

POLITECNICO DI MILANO

Ispezione, Manutenzione, Sicurezza e Gestione dei Ponti Bridge Inspection, Maintenance, Safety and Management

1° Workshop Gruppo Italiano IABMAS Politecnico di Milano, 14-15 Ottobre 2013

http://www.iabmas-italy.it

Gruppo Italiano IABMAS IABMAS Italian Group

55th Brazilian Congress on Concrete 3rd Symposium on Subway, Railway and Highway Infrastructure

Gramado, Rio Grande do Sul, Brazil November 1st, 2013

Thank you for kind attention!