Evaluation of Thixotropy of SCC and Inflence on Concrete Perfomance

Kamal Henri Khayat

© inversitr be SHERBROOKE

$54^{\text {th }}$ Congresso Brasilleiro do Concreto Maceio - Oct. 9, 2012

HPC: Concrete with improved mechanical properties \& service life

HPC: Concrete with improved workability

IBRACON, October 9, 2012

Industrial Research Chair on High-Performance Flowable Concrete with Adapted Rheology (FCAR)

Owners:	Ministère des Transports Québec	Hydro Québec	
Material Suppliers:			
Engineering Firms:	SNC•LAVALIN		
Testing Labs:			Laboratoire A. 回: inc.

[^0]
Rheoloripal parameters of FGAR

RiA Research Prointim

Theme III - Rheological Properties and Granular Flow Modeling

Theme II - Test Methods to Evaluate Flow Properties of FCAR

Flow behavior of SCC is complex and must be optimized to secure adequate performance
low resistance to flow (low τ_{0})
 high stability (moderate visc.)

high passing ability (low $\tau_{0}+$ mod.

Reduce water content to enhance viscosity

Incorporate VEA to enhance viscosity

Thixotropy - variation of viscosity with time at constant shear rate (reversable)

Primary particle
Agglomerates

Nepative Asperts of Struturial Build-up

Multi-layer casting

After 5 min of rest time, the 2 layers can mix well

After 20 min of rest time, the 2 layers do not mix at all

Nepative aspeat of struatural huili-up [thixotropy]

Positive Aspeets of Struatural Butili-up

Reduction in

 formwork pressure after casting due to structural buildup at restImproved static stability

Fators Affeatiny Form Pressure of BVE

- Fluidity level
- Casting rate
- Coarse aggregate volume
- Binder content and type
- Presence of admixtures
- Temperature of fresh concrete
- Minimum dimension of formwork
- Degree of vibration
- Etc.

Effect of Consistency Level

$\mathrm{H}=2.8 \mathrm{~m}$
$D=200 \mathrm{~mm}$

R ~ 1 m/hr

Lift height $=3.5 \mathrm{~m}$
$W=0.9 \mathrm{~m}(9 \times 4 \mathrm{~m})$

ABH347-04 [litrid, 2002]

Normal concrete with slump < 175 mm at time of casting Immersion of vibrator < 1.2 m in fresh concrete. Underneath concrete is not re-vibrated $\mathrm{R} \leq 4.5 \mathrm{~m} / \mathrm{h}$
$>$ Columns (R and H not specified) or walls with $\mathrm{R}<2.1 \mathrm{~m} / \mathrm{h}, \mathrm{H} \leq 4.2 \mathrm{~m}$

$$
p_{\max }(\mathrm{kPa})=C_{w} C_{c}\left[7.2+\frac{785 R}{T+17.8}\right]
$$

C_{w} : Unit weight coefficient C_{c} : Chemistry coefficient
$>$ Walls $(\mathrm{R}<2.1 \mathrm{~m} / \mathrm{h}, \mathrm{H}>4.2 \mathrm{~m})$ or walls $2.1<\mathrm{R}<4.5 \mathrm{~m} / \mathrm{h}$, H not specified

$$
p_{\max }(\mathrm{kPa})=C_{w} C_{c}\left[7.2+\frac{1156}{T+17.8}+\frac{244 R}{T+17.8}\right]
$$

$$
\begin{aligned}
30 \mathrm{C}_{\mathrm{w}}(\mathrm{kPa}) \leq \mathrm{P}_{\max } \leq 150 \mathrm{C}_{\mathrm{w}} \mathrm{C}_{\mathrm{c}}(\mathrm{kPa}) \\
\mathrm{P}_{\max } \leq \gamma_{c} H
\end{aligned}
$$

$>$ Pumping from bottom:
$P_{\max }=\gamma_{c} H+25 \%$ pump surge pressure

modifiad AG 347-04 Illurid. 2002]

Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$C_{w}:$ Unit weight coefficient
<2240	$C_{w}=0.5[1+w / 2320] \geq 0.80$
$2240-2400$	$C_{w}=1.0$
>2400	$C_{w}=w / 2320 \mathrm{~kg} / \mathrm{m}^{3}$

$\mathrm{C}_{c^{\prime}}$: Chemistry coefficient		C_{6}
	Type I, III, III without retarders	1.0
	Type I, III, III with retarders	
	Other types or blends containing < 70% slag or 40\% FA without retarder	1.2
	Other types or blends containing < 70% slag or 40\% FA with retarder	
	Blends containing > 70\% slag or 40\% FA	

Retarders (set retarder, retarder water reducer, retarding midrange WRA, or HRWRA) that delay setting

Various models to evaluate lateral

	R	T	H	Form width	Time	ρ	Thixotropy	Slump	Set time	Waiting period
1- ACI 347-04	X	X	X			X				
2- U.K. (CIRIA Report 108)	X	X	X			X				
3- Japan - Standard Specifications for Concrete Structures (2002)	X	X	X			X	$\begin{aligned} & \mathrm{R}=\text { Rate of casting } \\ & \mathrm{T}=\text { Temperature } \\ & \mathrm{H}=\text { Casting depth } \end{aligned}$			
4- Sweden (Design of Vertical Concrete Formwork)	X	X							X	

Various models to evaluate lateral

	R	T	H	Form width	Time	ρ	Thixotropy	Slump	Set time	Waiting period
1- ACI 347-04	X	x	X			X				
2- U.K. (CIRIA Report 108)	X	X	X			X				
3- Japan - Standard Specifications for Concrete Structures (2002)	X	X	X			X	R = Rate of casting T = Temperature H = Casting depth			
4- Sweden (Design of Vertical Concrete Formwork)	X	X							X	
5- Khayat \& Assaad [2005]	x		x			x	x			
6- Roussel and Ovarlez [2005]	X		X	X		X	X			
7- Lange et al., [2005]	X		X		x	X				
8- Khayat \& Omran [2009]	X	X	X	X		X	X			X
9- DIN 18 218:2010-01 (2010)	X		X			x			X	
10-Gardner et al., 2011	X				X	X		Sflow loss		

Outiline

- Thixotropy determination: structural breakdown and structural build-up at rest
- Thixotropy vs. form pressure exerted by SCC
- Structural build-up vs. drop in interlayer bond

Importance of Restruaturing ||

Formwork pressure $=\mathbf{f}$ (restructuring of the concrete)

1. Struetural hreakiown: drop in app. viseosity [$\left\langle\eta_{\text {pup }}\right.$]

Shear rate (1/s)

$$
\Delta \eta_{a p p}=\frac{\tau_{i}-\tau_{e}}{\dot{\gamma}}
$$

Ime intervals for assessing thixotropy

Testing \& rehomogizing = 2.5 min

Rest of 5 min

1. Strututural lireakdown: Struetural breakiown area [Ab,

Lapasin et al.[1983] $A b_{1}=\int_{0.3}^{0.9}(\tau(N)-\tau(N)) d N \quad J / m^{3} . s$

Lateral pressure envelope of SEB

$\mathrm{H}=2.8 \mathrm{~m}$
$D=200 \mathrm{~mm}$

Thixotropy vs. Lateral Pressure

Tynital Formwork Pressure Diauram

Pressure Variations with Thixotropy

2. Struturural huilid-up at rest: Re-struturing

Structural build-up: increase in shear stress (or viscosity) when the material is left at rest

Statio shear stress at regt [$\tau_{\text {oress }}$]

IBRACON, October 9, 2012

Portable vand [P1] test

Intinad plane [IP] test

$\tau_{s}=\rho g h \sin \alpha$
$\rho=$ density of sample
$g=$ gravitation constant
$h=$ mean central height of slumped sample $\alpha=$ critical angle of plane at flow start

Motion takes place in the form of planer fluid layers gliding over each others in the direction of the slope

Step 1

Step 2

Step 3

Inclinaid plane [IP] test

$$
I P \tau_{0 \text { orest }}=\rho g h \sin \alpha
$$

$\rho=$ density of sample
$g=$ gravitation constant
$h=$ mean central height of slumped sample
$a=$ critical angle of plane at flow start

Typical SCC mixtures
w/p 0.37-0.47

Slump flow $600-720 \mathrm{~mm}$

0
0
10
20
40
Rest time (min)

Yield stress at rest. PV and IP tests vs. rheometer

Data at 15 min rest time

IBRACON, October 9, 2012

Ihixotropy as input to evalitate formwork pressulre for SEG

$$
\begin{aligned}
& P_{\text {max }}=\rho g H\left[a_{1} H+a_{2} R+a_{3} T+a_{4} D_{\text {min }}+a_{5} T I_{\text {arinus mem }}\right]
\end{aligned}
$$

- ρ : unit weight of SCC
- H: casting depth in the form
- R: casting rate
- T: concrete temperature
- $\mathrm{D}_{\text {min }}$ formwork width
- TI. thixotropy index: $\mathrm{Tl}_{\text {@fixed temperature (} 22^{\circ} \mathrm{C} \text {) }}$ or $\mathrm{Tl}_{\text {@various temperature (} \mathrm{ti}) \text {. }}$

Pressure davies to datermine lateral nressure

IBRACON, October 9, 2012

Pressure variations

IBRACON, October 9, 2012

Use of pressure devibe to valitate mix desinn

Lateral pressure (kPa)

$$
\begin{aligned}
& \begin{array}{l}
H=1-13 \mathrm{~m} \\
R=2-30 \mathrm{~m} / \mathrm{h} \\
\mathrm{~T}=10-32^{\circ} \mathrm{C}
\end{array} \\
& \mathrm{~V}_{\mathrm{c}}=\text { unit weight (e.g. } 23.5 \mathrm{kN} / \mathrm{m}^{3} \text {) } \\
& \mathrm{d}=\mathrm{min} \text {. formwork dimension } \\
& \text { (} 0.2-1.0 \mathrm{~m} \text {) } \\
& D_{\text {min }}=\text { Equivalent to } d \\
& \text { For } 0.2<d<0.5 \mathrm{~m}, D_{\text {min }}=d \\
& \text { For } 0.5<d<1.0 \mathrm{~m}, D_{\text {min }}=0.5 \mathrm{~m} \\
& P_{\max }=\frac{\gamma_{c} H}{100}\left(112.5-3.8 H+0.6 R-0.6 T+10 D_{\text {min }}-0.021 P V \tau_{\text {oressel } 15 \text { min }}\right) f_{M S A} \times f_{W T} \\
& P_{\max }=\frac{\gamma_{c} H}{100}\left(109.5-3.9 H+0.7 R-0.6 T+3 D_{\text {min }}-0.29 P V \tau_{\text {drest }}(t)\right) f_{M S A} \times f_{W T} \\
& P_{\max }=\frac{\gamma_{c} H}{100}\left(106-4 H+0.6 R-0.63 T+10 D_{\text {min }}-0.00015 P V \tau_{\text {orestel } 15 \min } \times P V \tau_{\text {orest }}(t)\right) f_{M S A} \times f_{\text {WT }}
\end{aligned}
$$

Empiritital models for $\mathrm{K}_{0}=\mathrm{f}\left[1, \mathrm{R}, \mathrm{T}, \mathrm{D}_{\text {mire }}, \mathrm{P}_{\text {uixixa intax }}\right]$

Effeet of basting rate on lateral pressure charatteristios

Pressure can be reduced by:

lowering casting speed, or increasing thixotropy

Charts for reative lateral pressure K_{0}

					@15	in $=$	00									@15	in	12	0 P	
					R (1)	/h				< 50 kPa							/h			
		1	2	5	10	15	20	25	30	$50-80 \mathrm{kPa}$			1	2	5	10	15	20	25	30
	0	0	0	0	0	0	0	0	0	110-140 kPa		0	0	0	0	0	0	0	0	0
	1	22	22	22	23	23	24	25	26	140-170 kPa		1	17	17	17	18	19	19	20	21
	2	41	42	42	44	45	47	48	49	>170 kPa		2	32	32	33	34	35	37	38	40
	3	59	60	61	63	65	67	69	71			3	45	45	46	49	51	53	55	57
	4	76	76	78	81	83	86	89	92			4	56	57	58	61	64	67	70	72
	5	90	91	93	96	100	103	107	110			5	66	67	69	72	76	79	82	86
E	6	103	104	106	110	114	119	123	127		E	6	74	75	77	81	85	90	94	98
エ	7	114	115	118	123	127	132	137	142	6		7	80	81	84	89	94	98	103	108
	8	123	124	128	133	139	144	150	155	-		8	84	86	89	94	100	105	111	117
	9	131	132	136	142	148	154	161	167			9	87	88	92	98	105	111	117	123
	10	136	138	142	149	156	163	170	177			10	88	89	94	100	107	114	121	128
	11	140	142	147	154	162	169	177	185			11	87	89	93	101	108	116	124	131
	12	143	144	151	158	166	174	183	191			12	85	86	93	100	108	116	124	133
	13	143	145	154	159	168	177	186	195			13	80	82	91	96	105	114	123	132

Integrated research laboratory on materials valorization and innovative and durable structures - 2007-2009

IBRACON, October 9, 2012

Formwork

IBRACON, October 9, 2012

Investigated parameters

	Level 1000, H = 3.7 m (effect of casting rate)				Level 2000, H = 4.4 m (effect of thixo.)			
	Wall \#1 VCC	Wall \#2 SCC1	$\begin{gathered} \text { Wall } \\ \text { \#3 } \\ \text { SCC1 } \end{gathered}$	$\begin{aligned} & \text { Wall } \\ & \text { \#4 } \\ & \text { SCC1 } \end{aligned}$	Wall \#5 VCC	$\begin{aligned} & \text { Wall } \\ & \text { \#6 } \\ & \text { SCC1 } \end{aligned}$	$\begin{aligned} & \text { Wall } \\ & \text { \#7 } \\ & \text { SCC2 } \end{aligned}$	$\begin{gathered} \text { Wall \#8 } \\ \text { SCC3 } \end{gathered}$
Slump/ slump flow (mm)	$\begin{gathered} 120 \pm \\ 30 \end{gathered}$	650 ± 25			$\begin{gathered} 120 \pm \\ 30 \end{gathered}$	650 ± 25		
HRWRA type	---	PCP			---	PCP		PNS
$\mathrm{Vp}\left(\mathrm{L} / \mathrm{m}^{3}\right)$	---	Low, 330			---	$\begin{gathered} \text { Low } \\ 330 \end{gathered}$	$\begin{gathered} \text { High } \\ 370 \end{gathered}$	$\begin{aligned} & \text { Low } \\ & 330 \end{aligned}$
R (m / hr)	7.5	5	10	15	7.5	10		
W/CM	0.40	0.35			0.40	0.37	0.35	0.42+VMA

Air content <3.5\%, concrete temp. $=22-25^{\circ} \mathrm{C}$

Full characterization

10 persons to carry out > 17 tests

Lateral pressure [wall \# 6, SCC1, R = $10 \mathrm{~m} / \mathrm{h}$]

IBRACON, October 9, 2012

8 full-scale R/C columns

	Casting rate (m/h)							
Mixture		2	5	$5+$ 20^{\prime} WP	10	13	15	22
SCC-L		--	--	--	--	Col.\#1	--	Col.\#2
SCC-M		--	Col.\#7	Col.\#8	--			
SCC-H		Col.\#5	Col.\#3	--	Col.\#4	--	Col.\#6	--

2 pressure sensor of 20-mm diameter

ACI 347-04 vs. field measurements

Casting rate limited to $4.5 \mathrm{~m} / \mathrm{h}$ (ACl 347-04) Walls and columns cast of $\leq 5 \mathrm{~m} / \mathrm{h}$ are considered

Limited data

Khayat \& Omran [2009] vs. field measurements

$\triangle 8$ column elements
$\times 6$ wall elements cast with SCC

Round-Robin Tests for prediction of form pressure (May 2012)

Member	Special property to be measured
T. Proske, Germany	Setting time
M. Beitzel, Germany	Structural build up / BT2
N. Roussel, France	Structural build up / Plate test
K. Khayat, USA	Structural build up / Inclined plane, Portable Vane
A. Omran, Canada	Pressure column
D. Lange, USA	Pressure decay
J. Gardner, Canada	Slump loss
Y. Vanhove, France	Friction stress / Tribometer

Outiline

- Thixotropy determination: structural breakdown and structural build-up at rest
- Thixotropy vs. form pressure exerted by SCC
- Structural build-up vs. drop in interlayer bond

Struetural huilid-up can lead to assthetio problems in terins of rasting folds in multi-layer plagements

Interlayer hond strengith [slanted shear strength]

Tariation of residual hond strength with thixotropy and delay time hetween surbassive lifts

Statistibal model

$R B_{S S h} \%=-0.1608 D T \operatorname{Ln}$ Athix $_{P V}+1.0922 D T+100$

RBS = Residual bond strength
DT = Delay time between 2 layers

Residital honid strenjith

Flexural stress

Casting point

Critioal delay time to reath SO\% residual hond strength

IBRACON, October 9, 2012

Bonlisions

- Thixotropy of SCC can be assessed by structural breakdown and structural build-up at rest
- Breakdown area (Ab) or drop in apparent viscosity to assess thixotropy are determined using concrete rheometer
- Structural build-up at rest can be determined as:
> Variation of drop in apparent viscosity with time using concrete rheometer
> Variation of static yield stress at rest using concrete rheometer
$>$ Variation of static yield stress at rest using empirical tests (inclined plane and portable vane tests)

Gondlisions

- Increase of thioxotropy leads to reduction in form pressure exerted by SCC
- Residual interlayer bond of SCC increases with decrease thixotropy (structural build-up at rest)
- Long delayed time between casting two successive SCC layers leads to reduction in interlayer bond
- Residual inter-layer bond strength is more critical in shear than in flexural or compression failure modes

Acknowladinent

NRMC Research \& Education Foundation, ACI Foundation

NSERC IRC HP-Flowable Concrete with Adapted Rheology
J. Assaad, A. Omran, W. Magdi
S. Naji, P. Billberg, A. Yahia,
O. Bonneau, N. Petrov
R. Morin, M. D'Ambrosia

Outiline

- Thixotropy determination: structural breakdown and structural build-up at rest
- Thixotropy vs. form pressure exerted by SCC
- Structural build-up vs. drop in interlayer bond
- Mixture parameters affecting thixotropy (form pressure) of SCC

Effect of Consistency Level

$R=10 \mathrm{~m} / \mathrm{h} \quad$ Time after casting (min)

Effect of Set-Modifiers (Cohesion)

Slump flow $=\mathbf{6 5 0} \mathbf{~ m m}$
$w / c m=0.42$
Sand-to-total agg. $=0.44$
Ternary binder $=450$ kg/m ${ }^{3}$

Effect of HRWRA Type

Time after casting (min)

Effect of powder polysaccharide-based VEA content with variable SP dosages

Incorporation of low thickener VEA in SCC with 0.40 w/om can lead to lower lateral pressure than in SCC with $0.36 \mathrm{w} / \mathrm{cm}$ and no VEA

Medium or high content of polysaccharide-based VEA + PNS-based HRWRA resulted in higher residual pressure and lower rate of pressure drop after casting compared to SCC with low dosage of VEA (attributed to increased HRWRA demand)

Similar results with cellulose VEA + polycarboxylatebased HRWRA

Effect of Thickner Type (low concentration)

$$
\text { Slump flow = } 650 \text { mm }
$$

Mixtures incorporating TEA exhibited the lowest initial pressure and the fastest rate of pressure drop

Unlike conventional VEA, increase in TEA lead to further reduction in initial pressure and increased rate of drop in pressure

Effect of Binder Type

Slump flow $=\mathbf{6 5 0} \mathbf{~ m m}$ $w / c m=0.40$
$\mathrm{S} / \mathrm{A}=\mathbf{0 . 4 6}$

Slump flow = 650 mm

Effect of S/A (Internal Friction)

Statistical models to predict: K0@Hi, $\Delta K(t)$, tc

	$\xrightarrow{5}$	Predicting model in CODED values $\left(\phi, V_{c a}, S / A\right)=-1 \text { to }+1$	R^{2}	Relative error 95\% conf. limit (\%)
	\%	$\mathrm{K}_{0 @ H=4 \mathrm{~m}}=82-3.175 \mathrm{~V}_{\mathrm{ca}}-3.015 \phi+1.6875 \mathrm{~S} / \mathrm{A}+0.9 \phi . \mathrm{V}_{\text {ca }}$	0.94	2.4
	\%	$\mathrm{K}_{0 @ H=8 \mathrm{~m}}=67.2-4.7275 \mathrm{~V}_{\mathrm{ca}}+4.0675 \phi+1.96 \mathrm{~S} / \mathrm{A}+1.1775 \phi . \mathrm{V}_{\mathrm{ca}}$	0.94	2.3
	\%	$\mathrm{K}_{0 @ H=12 \mathrm{~m}}=53.5-6.2775 \mathrm{~V}_{\mathrm{ca}}+5.1175$ + $2.2325 \mathrm{~S} / \mathrm{A}$	0.91	4
$\frac{\stackrel{F}{y}}{y}$	\%/min	$\Delta \mathrm{K}(\mathrm{t})(0-60 \mathrm{~min})=0.1683+0.0325 \mathrm{~V}_{\mathrm{ca}}=0.0175 \mathrm{~S} / \mathrm{A}-0.0075 \mathrm{~S} / \mathrm{A} . \mathrm{V}_{\text {ca }}$	0.98	1.4
	\%/min	$\Delta \mathrm{K}(\mathrm{t})\left(0-\mathrm{t}_{\mathrm{c}}\right)=0.16-0.00625 \phi+0.0044 \mathrm{~S} / \mathrm{A}+0.0006 \mathrm{~V}_{\text {ca }}$	0.88	4.6
\pm	min	$\mathrm{t}_{\mathrm{c}}=587.7-48.56 \mathrm{~V}_{\mathrm{ca}}+38.06 \phi+24.19 \mathrm{~S} / \mathrm{A}+9.9375$ ¢.S/A	0.98	5.5

Contour diagrams

$\phi=720 \mathrm{~mm}$

$\mathrm{K}_{0 @ H=4 \mathrm{~m}}(\%)$

eunjo^ $\kappa \mathbf{q}{ }^{\text {res }} \boldsymbol{\Lambda}$

Bontlisions

- Thixotropy of SCC can be assessed by structural breakdown and structural build-up at rest
- Breakdown area (Ab) or drop in apparent viscosity to assess thixotropy are determined using concrete rheometer
- Structural build-up at rest can be determined as:
$>$ Variation of drop in apparent viscosity with time using concrete rheometer
> Variation of static yield stress at rest using concrete rheometer
$>$ Variation of static yield stress at rest using empirical tests (inclined plane and portable vane tests)

Contusions

- Increase of structural breakdown or structural build-up at rest leads to reduction in form pressure exerted by SCC
- Residual interlayer bond of SCC increases with decrease in structural build-up at rest
- Long delayed time between casting two successive SCC layers leads to reduction in interlayer bond
- Residual inter-layer bond strength is more critical in shear than in flexural or compression failure modes
- Key parameters affecting thixotropy are similar for form pressure and interlayer bonds characteristics

Conclusions I/2

Field studies validate importance of thixotropy on form pressure characteristics

SCC of high thixotropy can exhibit:
-> lower initial lateral pressure
\rightarrow faster drop in pressure with time

Conclusions 2/2

Formwork pressure of SCC = f (shear strength properties)

1) Internal friction \longrightarrow Maximum initial pressure
(higher aggregate volume, lower binder content and w/cm, use of SCM, lower consistency level, ...)
2) Cohesion Rate of pressure drop with time (higher binder content, use of SCM and setaccelerator, lower HRWRA, higher temperature, lower consistency level, ...)

[^0]: Prefab:

