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RECYCLED CONCRETE AGGREGATES 

(RCA) 

RCA is old concrete that has 
been removed, crushed, 
and sized for reuse 

Old aggregates as well as 
old mortar and some 
unhydrated cement 

RCA can contain 
contaminants 

RCA differs depending on 
crushing process 



IMPETUS FOR STUDY 

 RCA use in concrete goes back to post WWII Europe 

 MDOT was pioneer of RCA use in rigid pavements in 
the USA in 1980’s 

 1050 lane-km constructed 

 Moratorium for use in rigid pavements in 1991 

 Costs from landfill, transportation, and quality 
aggregates has brought issue back into play  

 Sustainability 



I-94 WEST OF KALAMAZOO, 

MICHIGAN, USA 

 JPCP after 
10 years 

 Shrinkage 
cracking 

 Wide 
joints and 
cracks 

 Low load 
transfer 



SOME RCA ISSUES FOR REUSE IN 

CONCRETE SURFACE LAYER 

 Varied crushing processes and high fines 

 D-cracking and Material-related distress potential 

 High alkalinity of water runoff 

 Leachates (calcium) and high pH for base material 

 High absorption (mortar / unhydrated cement) 

 Less volumetric stability 

 Shrinkage, creep, and carbonation 

 



LABORATORY STUDY 

 Aggregate Characterization 

 Absorption capacity 

 Specific gravity 

 Address RCA in comparison with virgin aggregate 
concrete 

 Hardened air content 

 Shrinkage (drying, autogenous, and restrained) 

Using three methods 



COARSE AGGREGATE SOURCES 

 Natural aggregates 

 Crushed gravel 

 RCA (with original aggregate type) 

 RCA limestone 

 RCA blast furnace slag 

 RCA crushed gravel 

 Recycled RCA crushed gravel (3G/Twice recycled) 

 Fine aggregate  natural sands 



DIFFERENCES IN ABSORPTION 

CAPACITY AND POROSITY 

 Standard ASTM C127 

 24-hour absorption 

 Visual assessment of SSD High variability 

 Helium Pycnometer and envelope density analyzer 
(EDA) 

 Automated 

 Assess water absorption? 

 Image Analysis 

 



IMAGE ANALYSIS - AGGREGATE 

THIN SECTIONS 

 

Surface 

porosity  

Internal 

porosity  

Using 
Impregnated 
resins with 
specified 

viscosities 
 



IMAGE ANALYSIS 

 Imaging 
software to 
assess 
 Pore sizes 
 Locations 
 Distribution 

 Leads into 
future research 
in moisture 
diffusivity and 
poromechanics 

 

  

  

Original Aggregate        Surface Porosity              Internal Porosity      



 Natural aggregates void of larger Feret’s diameter 

 Number of voids much lower in natural aggregates 

PORE SIZE DISTRIBUTION OF 

AGGREGATES 

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.005005 0.0175 0.0375 0.0625 0.0875

%
 F

re
q

u
e

n
c
y
 o

f 
P

o
re

 D
ia

m
e

te
r 

Diameter (mm)

Gravel RCA Slag RCA Limestone RCA Gravel

0%

1%

2%

3%

4%

5%

6%

7%

0.175 0.375 0.625 0.875 1.75 3.75

%
 F

re
q

u
e

n
c
y
 o

f 
P

o
re

 D
ia

m
e

te
r 

Diameter (mm)

Gravel RCA Slag RCA Limestone RCA Gravel



SURFACE POROSITY BY MULTIPLE 

METHODS 

 Image 
Analysis 
matches He 
Pyc /EDA 

 Does ASTM 
C127 
capture 
porosity/AC 
for highly 
porous 
aggs? 
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RCA CONCRETE MIX 

PROPORTIONING 

 0.42 water-to-cement ratio 

 No SCMs 

 362 kg cement per m3 of concrete 

 72% bulk volume of aggregate to vol. of concrete 

 Paving mixes high in coarse aggregate content 

 Air entrained (target= 6.5%, range of 5.5 – 8.5%) 

 Target slump 50mm 

 Monitor fresh properties over time 



FRESH PROPERTIES 

 Measured slumps consistently higher than 
expected for RCA concretes 

 Met specs for natural aggregate concretes 

 Slump loss was more dramatic in RCA concrete 

 Shorter window of workability 

 Harsh mixes with poorer consolidation 

 Superplasticizers helped to some degree 

 Fresh air content specification difficult to meet 



HARDENED AIR CONTENT 

 RCA 
occupies 
same bulk 
volume 

 Contains 
more void 
space 

 Moisture / 
chloride 
movement 
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AIR VOID SYSTEM QUALITY 

RCA concretes showed better air void system 
connectivity in general 

Dependent on old concrete’s quality 

Counterintuitive 

Aggregate Void Frequency 
Within 

Criteria 

Specific Surface 

Area (mm-1) 

Within 

Criteria 

Spacing Factor 

(mm) 

Within 

Criteria 

Crushed Gravel 0.187 N 16.3 N 0.303 N 

Slag RCA 0.339 Y 18.4 N 0.237 N 

Limestone RCA 0.522 Y 23.8 N 0.140 Y 

Crushed Gravel RCA  0.509 Y 29.8 Y 0.153 Y 



OPTICAL AND SCANNING 

ELECTRON MICROSCOPY 

 Porous interfacial transition 
zones (ITZ) 

 Ettringite filled pores of 3G 
concrete samples 

 Good performance of 3G 
concrete 

 Microcracking in old mortar 
from crushing process 

 Reduced fracture resistance 



DISTINCT MORTAR PHASES 

 Some evidence of multiple ITZs 

 



SHRINKAGE SPECIMENS 

 1-D shrinkage 

 ASTM C 157 

 Sealed (autogenous) 

 Unsealed 

 Difference is drying 
shrinkage 

 Stored at constant 
relative humidity, then 
switched after 1 year, 
then every 30-45 days 

  

  



MECHANISM OF SHRINKAGE 

Shrinkage in concrete is 
dominated by capillary 
surface tension 
mechanisms 

As water leaves pore 
system, curved menisci 
develop, creating 
reduction in RH and 
“vacuum” within the 
pore fluid  

Internal relative humidity (RH) 

Hydration 

product 
Hydration 

product 

 



VOIDS IN CONCRETE 

 RCA concrete contains higher percentage of 
entrained air through gel pores 

 Affects concrete durability and structural properties 



 Capillary stresses present in pores with radii 
between 2-50 nm 

 

 

 

 

 

 C-S-H makes up ~70% of hydration product 

 Majority of capillary stresses present in C-S-H network 

VISUALIZING THE SCALE OF SHRINKAGE 

MECHANISMS 

Note the 

dimensions 

Scanning electron 

micrograph  from Taylor 

“Cement Chemistry” 

(originally taken by S. 

Diamond 1976) 



DRYING SHRINKAGE IN RCA 

CONCRETE 

 Thought to be a driving force in deterioration of 
JPCPs in many cases 

 Higher amount of capillary pores from attached mortar 

 Unhydrated cement particles 

 Previous pavement design methods have not taken 
this into account 

 Pavement mechanics are now being utilized to 
capture effects 



DRYING SHRINKAGE AT 50% RH 

 Significantly 
higher for 
RCA concrete 

 Capillary 
porosity 
exists in RCA 
and new 
mortar 

 Crushing 
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RESTRAINED SHRINKAGE STRAINS 



RCA CONCRETE SLABS UNDER 

RESTRAINT 

 While drying shrinkage is higher in RCA 
concretes … 

 Increased creep characteristics of RCA concrete 
can relax strains at early ages 

 At later ages, creep is less effective in controlling 
strain magnitudes and deflections 

 Rigid pavement is restrained from dowels, tie 
bars, slab-base friction/bonding, and self-
weight 

 



MOISTURE IN CONCRETE 

PAVEMENT SLABS 

 Due to this semi-porous nature of concrete 

 Moisture can get in and out of pores 

 Due to simplicity of pavement geometry, typically 
through surface 

 Below depth of 50-100mm in concrete slab 

 Moisture content is nearly saturated and consistent 

 Top 50-100mm varies with rain events, ambient 
relative humidity, wind, etc. 

 Leads to highly non-linear moisture gradients in slab 



MOISTURE LOSS EFFECTS 

 Occurs through both self-desiccation and drying 

 Both cause volumetric changes 

 Autogenous (self-desiccation) happens throughout 
concrete 

 Drying shrinkage is a gradient within concrete 

 Drying shrinkage and warping are linked 

 Tied to gel pores and smaller capillary pores 

 Differential drying shrinkage – permanent 

 Warping – reversible portion of shrinkage 



WHY CURL AND WARP MATTER 

Stresses induced by 
environmental loading can 
be enough to crack a slab 

Slab corners can be 
unsupported 

Changing boundary 
conditions 

Change in primary failure 
mechanism 

Premature fatigue failure  

Top-down cracking from combined 

environmental and traffic loading 



DRYING SHRINKAGE LEADING TO 

SLAB DEFORMATION 

 Warping and built-in curling 
issues can lead to 
alternative fatigue cracking 
development 

 Gaps under slab corners 

 Interaction with external 
loads 



VOLUME CHANGE COMPONENTS IN THE MECHANISTIC-

EMPIRICAL PAVEMENT DESIGN GUIDE (MEPDG) 

Total Equivalent 
Temperature 

Difference 

Equivalent 
Temperature 

Gradient (ETG) 

Temperature 
Gradient 

Moisture 
Gradient 

Built-in Curl (BIC) 

Construction 
Curl 

Differential 
Drying Shrinkage 

 - Creep 



TEMPERATURE SHIFT DUE TO 

BUILT-IN CURL 

 Shift can be large enough to never “curl down” 

No Built-
in Curl 

-18oC 
Built-in 

Curl 



REVERSIBLE SHRINKAGE - 

INTRODUCTION 

Portion of shrinkage is reversible  

Assumed to be 50% in MEPDG 

Mindness and Young, 

(1981.) Concrete. 

Prentice Hall, Englewood 

Cliffs, NJ.  



REVERSIBLE SHRINKAGE – PAST 

RESEARCH 

Some research in 
Europe from 1940-
1975 

40-70% of shrinkage 
is reversible 

Mortars stored in 
water for an 
extended cure had 
complete shrinkage 
reversibility L’Hermite, R.L. (1947) “Le Retrait Des Ciments, 

Mortiets et Betons.” Laboratioires du Batiment et des 

Travaux Publics.  
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MECHANISM OF REVERSIBLE 

SHRINKAGE 

 The mechanism is not well understood 

 Neville hypothesized that C-S-H gels form bonds 
when they are in close proximity during drying 
phase 

 When the concrete is again exposed to moisture, 
these bonds swell, but hold the matrix together 

 Preventing shrinkage from being fully reversible 

Neville, A.M., Properties 

of Concrete. 4th ed. 1997, 

New York: Wiley & Sons, 

Inc. 



MECHANISM OF REVERSIBLE 

SHRINKAGE 

 Others hypothesize that a portion of irreversible 
shrinkage is related to microcracking 

 During the shrinkage phase, microcracks are 
formed and open 

 During swelling, cracks close either partially or fully 

 Because these cracks cannot be reversed, some 
portion of drying shrinkage is believed to be 
irreversible 

 

Granger L., Torrenti J.M., 

and Acker P., Thoughts 

About Drying Shrinkage: 

Scale Effect and 

Modelling. Materials and 

Structures, 1997. 30(3): 

pp. 96-105. 

 

Sellier A., and Buffo-

Lacarrière L., "Vers une 

Modélisation Simple et 

Unifiée du Fluage Propre, 

du Retrait et du Fluage en 

Dessiccation du Béton. 

Revue Européenne de 

Génie Civil, 2009. 13(10). 



% REVERSIBLE BY AGG TYPE 
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WARPING & DDS - FINAL 

MODELS 

 Non-linear model for equivalent temp. difference 
due to drying shrinkage in concrete pavements 

 Warping model 

 

 

 Differential Drying Shrinkage model 

 

Lederle, R.E., and Hiller, 

J.E., Development of New 

Warping and Differential 

Drying Shrinkage Models 

for Jointed Plain Concrete 

Pavements Derived with a 

Nonlinear Shrinkage 

Distribution, Accepted to 

the Transportation 

Research Record, 2012. 



WARPING & DDS – DESIGN AIDS 

h 25cm 

hs 7.5cm 

w/c 0.4 

ϕ 0.5 

εsu  1200µε 



HOW THIS AFFECTS CONCRETE 

PAVEMENTS IN AUSTRALIA 

 Non-linear 
model for 
equivalent 
temp. 
difference 
due to 
drying 
shrinkage 



HOW THIS AFFECTS CONCRETE 

PAVEMENTS IN AUSTRALIA 

 For RCA 
concretes 

 Higher 
drying 
shrinkage 

 More 
change in 
coastal 
regions 



SIGNIFICANCE OF HIGH LEVELS OF PERMANENT 

DIFFERENTIAL DRYING SHRINKAGE? 

 Poor curing  High irreversible drying shrinkage 

 Leads to high levels of built-in curling in JPCP 

 Essentially causes equivalent temperature shift for 
specific climatic location 

 MEPDG captures this effect to some degree 

 Only predicts transverse fatigue cracking 

 To account for fatigue as transverse, longitudinal, or 
corner cracking  

Rigid Pavement Analysis for Design in California



RADICAL 

 Mechanistic rigid 
pavement analysis tool 

 Predict fatigue cracking 
at multiple locations 

 Transverse, longitudinal, 
corner cracking 

 Top-down or bottom-up 

 Site-specific conditions, 
traffic, materials 
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LOW LOAD TRANSFER AND 4.6M 

JOINT SPACING 
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EBITD = Equivalent Built-

in Temperature Difference 

 

For temperature 

differences, °C = 5/9 °F 

 

For San Francisco  

climate, traffic, soils, etc. 



LOW LOAD TRANSFER AND 3.7M 

JOINT SPACING 
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RCA CONCLUSIONS 

 More unpredictable fresh and hardened properties 
using RCA in concrete 

 Need to account for existing air content in RCA 

 RCA concrete shows higher drying shrinkage, but 
better creep characteristics 

 Account for some factors in mechanistic design methods 

 Creep may be advantageous in restrained pavements 

 Must understand differences and plan for multi-
generational use  Promote Sustainable Practices 



RCA IN PVTS CONCLUSIONS 

 Past pavement design/analysis has not taken moisture 
warping into consideration directly 

 Not site-specific design 

 MEPDG attempts to account for this … unsuccessfully 

 Amount of reversible warping can be controlled 

 Macro-level  curing conditions, w/c ratio, SCMs 

 Affects nano/micro-level  C-S-H gel spacing, micro-cracking 

 RCA concretes show no difference with virgin agg concretes 

 Now have ability to capture these effects in pavement 
design, analysis, and construction practices 



RCA OPPORTUNITIES IN RIGID 

PAVEMENTS 

 Cost savings for right projects 

 Typically urban with crushing on-site 

 Michigan environmental policy to use RCA if up to 10% 
greater cost than virgin aggregates 

 Knowledge and control of original project aggs 

 Lower cement content can yield good performance 

 Design adjustments to accommodate differences 

 Joint spacing, thickness, limited restraint, materials? 

 Two-lift construction? 
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THANK YOU … 

ANY QUESTIONS? 


