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Summary 

>The influence of upstream zones in the limitation 
of the progression of internal erosion in zoned 
dams 

 

>Self-hardening slurry walls design and quality 
control 
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Internal erosion process leading to failure 
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4 



© LNEC 2012 

 

Section A-A'

Concentrated leakage
through a transverse crack

Section A-A'

Longitudinal view

INITIATION

CONTINUATION OR FILTRATION

PROGRESSION

BREACH FORMATION

A

A'

Absence or
malfunctioning of
downstream filter

Enlargment of the
concentrated leak

(erodability of soil)

Reservoir
empties after
pipe collapse

Cross Sectional view

Breach formation
B

B'

Section A-A'

Pipe
formation

Flow
increases

Cracks above pipe

e.g. cracking mechanism
by arching effect

Section B-B'

Does the upstream zone:
  - Limits the eroding flow?
  - fills in the flaw in the core?

Internal erosion process leading to failure (cont) 

5 



© LNEC 2012 

Tunbridge Dam, Tasmânia, Australia, 11/28/2008 

Source: Jeffery Farrar (2008) 

Progression of internal erosion to piping 
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Source: Hanson e Hunt (USDA, 2007) 

Progression of internal erosion to piping 
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Erodability of soils in concentrated leaks 
> Hole Erosion Test (HET) 

Specimen in standard
Proctor mould

Downstream chamber

of acrylic glass

Upstream chamber

of acrylic glassDrilled hole

Ø6 mm

l/h

Flowmeter

Control valve

Upstream tank supplied
by large reservoir above

Downstream tank

Purge Purge

Pea gravel
20 mm to 30 mm

Scale
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piezometer

Downstream

piezometer
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˜  200 mm

Drain

Drain
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Hole Erosion Test (HET) during test 
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Hole Erosion Test 

> Axial hole at the end of a test 
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Limitation of progression of piping 

>Flow restriction action 

Influence of the presence of upstream zones 

Flow Limitation Erosion Test (FLET) Crack-Filling Erosion Test (CFET) 

>Crack-filling action 

Upstream 
material Core Filter 

Upstream 
material Core 11 
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Test cell developed at LNEC for FLET and CFET 
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Flow Limitation Erosion Test (FLET) 
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Flow Limitation Erosion Test 

> Steps for assembly of test cell and specimen preparation 

Step 1 Step 5Step 4Step 3

Upstream

material

90º

Step 2

Core
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Upstream materials tested in the FLET 
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Some results of carried out FLET’s at LNEC 
> Flow restriction due to non-erodible upstream material 
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Some results of carried out FLET’s at LNEC 
> Erosion process slows down during a period 
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> The performed tests showed that the FLET allows the evaluation 
of the flow restriction action by an upstream material, that is, if 
the piping process in the core stops, slows down or progresses. 

> The flow restriction action is strongly influenced by some 
characteristics of the upstream materials, including the fines and 
gravel contents, as well as the plastic nature of the fines. 

> The compaction water content of the upstream material affects 
strongly the progression of piping erosion.  

> The non-plastic fines of soils compacted to the dry side tends to 
erode more rapidly, leaving unbounded the gravel particles with 
potential to initiate a self-healing mechanism at the interface or 
inside the core sample. 

Major outcomes of carried out FLET’s 
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Material de

montante

Filling in with eroded particles

from the upstream material

Filter does not retains the

particles from the core

Material settles

Clayey core

Filter retains the coarser particles

eroded from the upstream material

Sinkhole

Rockfill
Rockfill

Crack-Filling Erosion Test (CFET) 

> Conceptual model of Crack-filling action mechanism 
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WAC Bennett Dam | Canadá 
 
Embankment height=186 m | Length= 2 km 
Electricity production= 13 biliões kWh/ano 

Source: Steve Garner, BCHydro (2007) 

 

Crack-Filling Erosion Test (CFET) 

> Example of sinkhole formation at the embankment crest 

22 



© LNEC 2012 

Crack-Filling Erosion Test (CFET) 

> Placement of the filter layer > CFET setup ready to test 
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> Crack-filling of the axial hole on the core with an uniform fine sand 

Crack-Filling Erosion Test (CFET) 
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Crack-Filling Erosion Test (CFET) 

> Crack-filling of the axial hole on the core with an uniform fine sand 
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> The preliminary tests showed that the CFET is suitable for the 
evaluation of the crack-filling action by granular upstream 
materials. 

> The filter layer has an important role in the crack filling action, by 
retaining some of the particles that are washed in from the 
upstream material.  

> The potential benefits of crack filling action arise from the 
compatibility between the particle sizes of the upstream material 
and those of the downstream filter. 

> Tests are currently underway examining the crack-filling action 
due to the presence of several types of coarse grained upstream 
materials (obtained by blending some fines, and sand and gravel 
particles). 

 

Major outcomes of preliminary CFET’s 
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SELF-HARDENING SLURRY WALLS 

DESIGN AND QUALITY CONTROL 
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INTRODUCTION 

 

> Objectives   
 A comprehensive literature review. 

 Characterization of the factors involved in 

self-hardening slurry behaviour during 

construction and in the long term perfor-

mance. 

 Definition of numerical models for 

analysis and interpretation of the slurry 

wall behaviour. 

 Definition of design principles. 

 Proposal of a quality control and perfor-

mance evaluation methodology. 
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> A self-hardening slurry cut-off wall is a non- 

-structural underground wall that serves as a 

barrier to the horizontal flow of water and other 

fluids.  

> It is constructed with the aid of a viscous 

stabilizing fluid known as slurry. Usually, 

cement-bentonite slurries are used.  

> In Europe, self-hardening slurries walls have 

been used since 1960, particularly in seepage 

control applications. 

> In Portugal, the technology was first applied in 

1978, in the remedial works of the Roxo Dam.  

DESCRIPTION SELF-HARDENING SLURRY CUT-OFF WALL 
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> Main applications of the technology. 

> Construction procedures. 

 Excavation dewatering. 

 Reduction of seepage through embank-

ments or water storage structures. 

 Reduction of seepage of ponds and 

lakes. 

 Subsurface dams or groundwater 

reservoir. 

 Isolation or maintenance of water tables. 

 Containment of solid and liquid wastes. 

 Seismic cut-off. 

APPLICATIONS 
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> Roxo Dam 

APPLICATIONS 

Plan 

Cross-section 

Cut-off wall characteristics: 

   Wall length:              190 m 

   Maximum depth:             16.8 m 

   Width:                                    0,6 m 

Self-hardening 

slurry wall 

Self-hardening 

slurry wall Crest 

Concrete gravity dam 

Earth embankment 

dam 

Stilling 

basin 

Irrigation channel 

Water intake 

Grout curtain 

Original upstream slope 
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Jan. 1977 
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Parede auto-endurecedora - Abril 1978 
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Maio 1978 
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Agosto 1980 
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> Crestuma-Lever Dam 

APPLICATIONS 

Self-hardening 

slurry wall 

Self-hardening 

slurry wall 

Diaphragm wall 

Diaphragm wall 

Power plant 

Crest 

Navigation lock Fish 

ladder 

D
o
u
ro

 

R
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Stilling basin 

Alluvial soil 

Rock formation 

Diaphragm cut-off wall 

Self-hardening slurry wall 

Plan Cross-section 

Cut-off wall characteristics: 

   Wall area:                               5 600 m2 

   Maximum depth:               40 m 

   Width:                                   0,8 m 
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> Águas Industriais Dam 

APPLICATIONS 

Plan 

Cross-section 

Cut-off wall characteristics: 

   Wall length:              175 m 

   Maximum depth:                14 m 

   Width:                                    0,4 m 

Bottom outlet  

Original dam 

Downstream 

slope 

Self-hardening 

slurry wall 

Original dam profile 

Crest Heightening 

section 

Self-hardening 

slurry wall 
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> Main applications of the technology. 

> Construction procedures. 

APPLICATIONS 

Phase 1 

Phase 2 

Phase 3 

Phase 4 

Phase 5 

Etapa 6 

P – Primary panel 

S – Secondary panel 

S 

P 

P 

S 

S 

P 

P P 

P P 

P 

P 

P 

P 

P 

S P 

P 

P 

P 

P 

 Alternating panel method. 
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> Main applications of the technology. 

> Construction procedures. 

APPLICATIONS 

 Alternating panel method. 

 Continuous trenching method. 
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> Main applications of the technology. 

> Construction procedures. 

APPLICATIONS 

 Alternating panel method. 

 Continuous trenching method. 

 Structural diaphragm wall traditional 

method. 
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> Self-hardening slurry features. 

> Self-hardening slurry composition. 

> Chemical reactions between water, cement 

and bentonite. 

 Water:                                  1 m3 

 Cementitious material:       100 to 350 kg 

 Bentonite:                       30 to 60 kg 

SELF-HARDENING SLURRY CHARACTERIZATION 

Water (100%) 

Cement 

(100%) 

Bentonite 

(100%) 

Non-setting 

slurries 

Semi-fluids 

Cut-off slurries 

Bleeding 

slurries 



© LNEC 2012 

SELF-HARDENING SLURRY CHARACTERIZATION 

CAH gel 

Flocculated bentonite  

particles 

CSH gel 

Ca2+ ions release 

Hydrous silica and  

alumina 

(OH)- ions release 

CSH gel 

CAH gel 

Hydrated lime 

Ca(OH)2 

Cement Bentonite suspension 

Cement hydration 

Dissociation of 

hydrated lime 

pH rise 
Modification of 

the adsorbed cation  

population 

Dissolution of  

silica and alumina of  

bentonite  

Shrinkage of  

bentonite diffuse  

double layer 

Interparticle bonding 

 

Primary 

cementitous 

products 

Secondary 

cementitous 

products 

Bentonite-cement clusters 

Reaction with Ca2+  

and (OH)- ions 

> Self-hardening slurry features. 

> Self-hardening slurry composition. 

> Chemical reactions between water, cement 
and bentonite: 
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> Self-hardening slurry features. 

> Self-hardening slurry composition. 

> Chemical reactions between water, cement 

and bentonite. 

SELF-HARDENING SLURRY CHARACTERIZATION 

Pores 

Smectite 

particle 

Slag 

particle 

Nucleus 

CSH gel 

(high density) 

Clinker 

particle 
CSH gel 

(low density) 

Bentonite-cement cluster 
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PROCESSES INVOLVED IN THE FORMATION OF THE CUT-OFF WALL 

     MATERIAL 

 

VISCOUS  

FLUID 

(Trench walls 

support) 

 

VISCOUS  

SOLID 

(Time-

depending 

properties) 

Soil contamination 

Penetration 

Filtration 

Penetration and 

Filtration 

Sedimentation 

Cement hydration 

Self-weight 

consolidation 

Cement hydration 

Pozzolanic reactions 

EXCAVATION  

PHASE 

FIRST HOURS  

POST-EXCAVATION 

FOLLOWING 

PERIOD 

Cement Setting 
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EXPERIMENTAL WORK 

> Objectives.  Identify and quantify the influence of the 

slurry composition, and mixing proce-

dures upon the rheological behaviour of 

the fresh slurry. 

 Identify and quantify the influence of the 

slurry composition, spoil contamination, 

curing time and surcharge loads upon the 

physical, mechanical and hydraulic 

behaviour of the hardened slurry. 
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EXPERIMENTAL WORK 

> Experimental work description: 

 Rheological characterization of self- 

-hardening slurries. 

 Characterization of the “cake” formed by 

filtration. 

 Bleeding evolution of self-hardening 

slurries.  

 Physical characterization of hardened 

slurry samples.  

 Compressibility and threshold stress of 

hardened slurry samples. 

 Strength and deformability of hardened 

slurry samples. 

 Permeability of hardened slurry samples. 
Slurry composition 

35 kg bent. + 150 kg cement 

35 kg bent. + 200 kg cement 

50 kg bent. + 200 kg cement 

  Marsh viscosity 

47 s 

49 s 

105 s 

Marsh funnel and cup 
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EXPERIMENTAL WORK 

> Experimental work description:  

 Rheological characterization of self- 

-hardening slurries. 

 Characterization of the “cake” formed by 

filtration. 

 Bleeding evolution of self-hardening 

slurries.  

 Physical characterization of hardened 

slurry samples.  

 Compressibility and threshold stress of 

hardened slurry samples. 

 Strength and deformability of hardened 

slurry samples. 

 Permeability of hardened slurry samples. 

Fann viscometer 
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EXPERIMENTAL WORK 

> Experimental work description:  

 Rheological characterization of self- 

-hardening slurries. 

 Characterization of the “cake” formed by 

filtration. 

 Bleeding evolution of self-hardening 

slurries.  

 Physical characterization of hardened 

slurry samples.  

 Compressibility and threshold stress of 

hardened slurry samples. 

 Strength and deformability of hardened 

slurry samples. 

 Permeability of hardened slurry samples. 

Slurry composition 

35 kg bent. + 150 kg cement 

35 kg bent. + 200 kg cement 

50 kg bent. + 200 kg cement 

Viscosity    Gel strength  

   8.0 cP  4.1 Pa 

   9.5 cP  4.6 Pa 

  12.5 cP  5.1 Pa 
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EXPERIMENTAL WORK 

> Experimental work description:  

 Rheological characterization of self- 

-hardening slurries. 

 Characterization of the “cake” formed by 

filtration. 

 Bleeding evolution of self-hardening 

slurries.  

 Physical characterization of hardened 

slurry samples.  

 Compressibility and threshold stress of 

hardened slurry samples. 

 Strength and deformability of hardened 

slurry samples. 

 Permeability of hardened slurry samples. 

Filter press 
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EXPERIMENTAL WORK 

> Experimental work description:  

 Rheological characterization of self- 

-hardening slurries. 

 Characterization of the “cake” formed by 

filtration. 

 Bleeding evolution of self-hardening 

slurries.  

 Physical characterization of hardened 

slurry samples.  

 Compressibility and threshold stress of 

hardened slurry samples. 

 Strength and deformability of hardened 

slurry samples. 

 Permeability of hardened slurry samples. 

35 kg bentonite + 200 kg cement
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 “Cake” permeability:           1.7x10-8 m/s 

  “Cake” unit mass:                1240 kg/m3 

  “Cake” water content:                  122% 

  “Cake” void ratio:                 3.0 
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EXPERIMENTAL WORK 

> Experimental work description: 

 Rheological characterization of self- 

-hardening slurries. 

 Characterization of the “cake” formed by 

filtration. 

 Bleeding evolution of self-hardening 

slurries.  

 Physical characterization of hardened 

slurry samples.  

 Compressibility and threshold stress of 

hardened slurry samples. 

 Strength and deformability of hardened 

slurry samples. 

 Permeability of hardened slurry samples.  

Composition                                        Bleeding 

 35 kg bent. + 150 kg cement:                     6% 

 35 kg bent. + 200 kg cement:              5 to 6% 

 50 kg bent. + 200 kg cement:                     2% 
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EXPERIMENTAL WORK 

> Experimental work description:  

 Rheological characterization of self- 

-hardening slurries. 

 Characterization of the “cake” formed by 

filtration. 

 Bleeding evolution of self-hardening 

slurries.  

 Physical characterization of hardened 

slurry samples.  

 Compressibility and threshold stress of 

hardened slurry samples. 

 Strength and deformability of hardened 

slurry samples. 

 Permeability of hardened slurry samples. 

Slurry composition 

35 kg bent. + 150 kg cement 

35 kg bent. + 200 kg cement 

50 kg bent. + 200 kg cement 

 

35 kg bent. + 150 kg cement 

35 kg bent. + 200 kg cement 

50 kg bent. + 200 kg cement 

 

35 kg bent. + 150 kg cement 

35 kg bent. + 200 kg cement 

Unit mass (average) 

1145 kg/m3 

1155 kg/m3 

1165 kg/m3 

Water content 

395 to 445% 

305 to 350% 

300 to 325% 

wL IP 

  128%   22% 

  151%   38% 



© LNEC 2012 

EXPERIMENTAL WORK 

> Experimental work description: 

 Rheological characterization of self- 

-hardening slurries. 

 Characterization of the “cake” formed by 

filtration. 

 Bleeding evolution of self-hardening 

slurries.  

 Physical characterization of hardened 

slurry samples.  

 Compressibility and threshold stress of 

hardened slurry samples. 

 Strength and deformability of hardened 

slurry samples. 

 Permeability of hardened slurry samples.  

35 kg bentonite + 200 kg cement
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EXPERIMENTAL WORK 

> Experimental work description: 

 Rheological characterization of self- 

-hardening slurries. 

 Characterization of the “cake” formed by 

filtration. 

 Bleeding evolution of self-hardening 

slurries.  

 Physical characterization of hardened 

slurry samples.  

 Compressibility and threshold stress of 

hardened slurry samples. 

 Strength and deformability of hardened 

slurry samples. 

 Permeability of hardened slurry samples.  
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EXPERIMENTAL WORK 

> Experimental work description: 

 Rheological characterization of self- 

-hardening slurries. 

 Characterization of the “cake” formed by 

filtration. 

 Bleeding evolution of self-hardening 

slurries.  

 Physical characterization of hardened 

slurry samples.  

 Compressibility and threshold stress of 

hardened slurry samples. 

 Strength and deformability of hardened 

slurry samples. 

 Permeability of hardened slurry samples.  

35 kg bentonite + 200 kg cement

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Vertical pressure (kPa)

e
 /

 e
0

4 weeks curing 8 weeks curing

12 weeks curing



© LNEC 2012 

EXPERIMENTAL WORK 

> Experimental work description:  

 Rheological characterization of self- 

-hardening slurries. 

 Characterization of the “cake” formed by 

filtration. 

 Bleeding evolution of self-hardening 

slurries.  

 Physical characterization of hardened 

slurry samples.  

 Compressibility and threshold stress of 

hardened slurry samples. 

 Strength and deformability of hardened 

slurry samples. 

 Permeability of hardened slurry samples. 
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EXPERIMENTAL WORK 

> Experimental work description:  

 Rheological characterization of self- 

-hardening slurries. 

 Characterization of the “cake” formed by 

filtration. 

 Bleeding evolution of self-hardening 

slurries.  

 Physical characterization of hardened 

slurry samples.  

 Compressibility and threshold stress of 

hardened slurry samples. 

 Strength and deformability of hardened 

slurry samples. 

 Permeability of hardened slurry samples. 
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EXPERIMENTAL WORK 

> Experimental work description:  

 Rheological characterization of self- 

-hardening slurries. 

 Characterization of the “cake” formed by 

filtration. 

 Bleeding evolution of self-hardening 

slurries.  

 Physical characterization of hardened 

slurry samples.  

 Compressibility and threshold stress of 

hardened slurry samples. 

 Strength and deformability of hardened 

slurry samples. 

 Permeability of hardened slurry samples. 
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FUTURE RESEARCH 

> Feasibility study regarding the use of 

piezocone penetration tests for assessing the 

integrity of self-hardening slurry cut-off walls, 

but also for determining permeability, strength 

and compressibility of the slurry "in situ". 

> Feasibility study regarding the use of geophy-

sical tests in assessing the integrity of self- 

-hardening slurry cut-off walls and also in the 

characterization of its permeability. 

> Sedimentation and self-weight consolidation 

analysis of self-hardening slurries using a 

consolidation column equipped with a gamma 

densimeter.  

> Detailed study concerning the influence of 

slurry setting upon the development of slurry 

filtration, penetration and sedimentation 

processes. 
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