My Mission This Morning

To give you:

- Exciting report of my visit to this Congress
- Exciting Introduction to ACI
- Boring talk about concrete

I have seen and enjoyed beautiful things this week...

And I have seen the bright future of IBRACON and our Industry

American Concrete Institute® Advancing concrete knowledge

Intro

to

ACI

ACI's Leadership:

Good Friend,

Trusted Companion,

Expert Concrete Engineer

ACI's Leadership:

And Executive Vice President

(Chief of Staff)

(Executive Director) of <u>ACI</u>

ACI IS

- Technical & educational society
- Dedicated to improving design, construction, maintenance, & repair of concrete structures
- Large and growing connecting point for access to world-wide concrete knowledge

ACI is **NOT**

- A Trade or Promotional Association
- A Government Agency
- A University

ACI's Mission:

"Provide knowledge and information for the best use of concrete"

ACI's Vision:

A worldwide unified concrete community made up of equal partners

ACI Headquarter, Michigan, USA

In Reality ACI is...

ACI Membership

- Nearly 20,000 Members in 129 countries
- 5400 members outside North America
- Over 6000 Student Members
- 1000 Organizational Members
- 3900 Volunteers

ACI members are:

Architects Materials Suppliers Lawyers **Consultants Researchers** Contractors **Students Educators Laboratory** Technicians Engineers **ANYONE interested in concrete**

ACI Committees

- 120 Technical Committees
- 25 Education and Certification Committees
- 30 Administrative Committees

280,000 hours donated \$35,000,000 cash value

More than 400 technical documents, including:

- Codes
- Specifications
- Reports and Guides
- References

• Annual Manual of Concrete Practice

New Publications

Requisitos de Reglamento para Concreto Estructural

Especificaciones para Concreto Estructural

ACI 301S-05	
Especificaciones para Concreto Estructural (Versión en español y en sistema métrico) Es un Estándar del ACI	
Producido por el Comité ACI 301	
American Concrete Institute	ac

Guía del Contratista para la Construccíon en Concreto de Calidad

ACI Periodicals

- Concrete International (CI)
- ACI Structural Journal
- ACI Materials Journal

Online Concrete Knowledge Center

 Information for the design, construction, and repair of concrete and concrete structures

Educational Activities

- Scholarships and fellowships
- Seminars
- Publications
- Online learning
- Student competitions
- Technical sessions at ACI conventions

Chapters

- 101 Chapters Worldwide
- 58 Chapters in the U.S.A.
- 43 Chapters outside the U.S.A.

Certification

- Largest certifying body in the concrete industry
- Over 400,000 exams administered
- •Over 26,000 exams conducted per year
- Certified individuals residing in 54 countries
- Certification programs in English, Spanish, French, Chinese

Certification Programs

- Flatwork Finisher
- Field Technician
- Craftsmen
- Strength Technician
- Laboratory Technician
- Aggregate Technician
- Inspector
- Tilt-Up
- Shotcrete Nozzleman
- Transportation Inspector
- Adhesive Anchor Installer

For information regarding the certification criteria of AC programs, or to verify the validity of this card, contact:

> The American Concrete Institute PO Box 9094 Farmington Hills, MI 48333-9094 248/848-3790 FAX 248/848-3793

www.ACICertification.org

This card is the property of the American Concrete Institute. Unauthorized reproduction or misuse of this card may result in legal action.

Conventions

- Spring and fall conventions
- 330 committee meetings
- 40 technical sessions
- Student competitions
- 1400 to 1600 attendees representing 34 countries
- 2012 Spring Convention
 - March, 2012
 - Dallas, Texas, U.S.A.

Educator Membership Program

•Full-time Concrete Educators

Not ACI member 5 years

Free E-Membership

Magazine & Journal Subscriptions

Member & Student access to ACI resources

•Member rates for convention

ACI International Partner Program

A unified, worldwide community of equal partners

ACI would like to thank its current International Partners:

IBRACON

- Asian Concrete Federation
- Associação Nacional de Pisos e Revestimentos de Alto Desempenho
- Austrian Society for Construction Technology
- Cement Concrete & A
- Chilean Cement and
- China Concrete & Cer Association
- Colombian Associati Earthquake Engineer
- Concrete Institute of
- The Concrete Society
- Concrete Society of S
- Czech Concrete Socie
- Federación Iberoamericana del Hormigón Premezclado
- Hong Kong Concrete Institute
- Instituto Brasileiro do Concreto
- Instituto Mexicano del Cemento y del Concreto

- Japan Concrete Institute
- Korea Concrete Institute
 New Zealand Concrete Society

Association iciences ernationale des ais et de recherche et les (International Construction s and Structures) Industry Association h Institute of

Association
 Stitute
 Vietnam Concrete Association

American Concrete Institute[®] Advancing concrete knowledge

International Concrete Research Portal

- Open to all International Partners
- Partners supply abstracts of their papers to ACI
- ACI includes partner journals on the portal.
- Full text of the journal papers can be hosted at ACI or the partner's Web site

www.concrete.org

Sustainability Initiatives

• ACI Committee 130, Sustainability of

Concrete

- ISO TC-71 SC8
- Seminars, sessions, and forums at
 - **ACI conventions**
- Two publications via CAM Publishing
- Concrete Joint Sustainability Initiative (JSI)

Sustainability Books

Andres I Straker Milles I Straker U.S. GREEN BONENET COUNCIL

Applications

Joint Sustainability Initiative

An agreement between 26 U.S.
 Concrete-related societies

 Establishing an Industry Vision for a sustainable future

American Concrete Institute® Advancing concrete knowledge

www.concrete.org

From Liquid to Solid: Transitions in Concrete Behavior: or Concrete Waits for No One

From Liquid to Solid: Transitions in Concrete Behavior: or Concrete Waits for No One

Roberto C. A. Pinto and Ken Hover

From Liquid to Solid: Transitions in Concrete Behavior: or Concrete Waits for No One

Roberto C. A. Pinto and Ken Hover

Monitoring the Liquid to Solid Transition in Concrete with Conventional Tests

> Jon Abel, Roberto Pinto and Ken Hover

Abel, J.H., Pinto, R.C.A., Hover, K.C., Monitoring the liquid to solid transition in concrete with standard tests, ACI Special Publication SP-259: Transition from Fluid to Solid: Re-Examining the Behavior of Concrete at Early Ages, Kyle Riding, Editor, American Concrete Institute, March 2009.

Time After Batching Concrete (hrs)

Time After Batching Concrete (hrs)

Concrete is hard for a very long time

(durability problems notwithstanding)

Concrete is hard for a very long time

It is fresh for a very short time

Concrete is hard for a very long time

It is fresh for a very short time

And the rate of transition matters!

Who worries about this transition and its rate?

Who cares about this transition and its rate?

The Contractor!

The contractor is in a race with the concrete

Time,

Time, and Tide,

Time, and Tide, and Concrete

wait for no Contractor

Time, and Tide,

and Concrete

wait for no Contractor (or Engineer)

Time, and Tide,

and Concrete

wait for no Contractor or Researcher

Aggregates

Aggregates can <u>Move</u> in Workable Concrete

A Look Inside

What drives the liquid-to-solid transition?

Aggregates

Hardened Concrete

Development of internal Shear Resistance

Assuming constant volume and conical shape

Hydration

Heat of Hydration

About 450 kJ per Kg Cement

Heat of Hydration

About 450 kJ per Kg Cement

About 10-15% of Heat Energy input at Cement Plant returned to Contractor (at no extra charge)

How fast is this heat of hydration produced?

Contractor's Heat Bonus

Isothermal Calorimetry

Field Calorimeter

3-Stages in the Early Life of Concrete

Crudely As, defined by our ability to track changes

~ 6 mm footprint ~ 0.03-0.04 MPa foot pressure

Measuring Penetration Resistance **Force Required Penetrate 1 in** in 10 seconds **Contact Area** Mortar

ASTM C403 Setting Time

Prof. Roberto C.A. Pinto U.F.S.C.

Performed on mortar sieved from concrete Prof. Roberto C.A. Pinto U.F.S.C.

Penetration Test in concrete

Probe sized to simulate a typical footprint.

~ No footprint

6 mm @ ~ 0.1 MPa concrete pressure

Window of Finishability

Time (hours)

A Single Case History

- •28 MPa mix
- •Air Entrained
- •333 kg cem/m³
- •13 cm slump @45 min
- •19 mm stone
- •Ready-mixed (Dry Batch Plant)
- •Summer

30 State & Federal Highway Engineers

vs. 1 Truckload of Concrete

Arrhenius-Type Maturity, $T_{ref} = 20C$ (68F), $E_a = 33.5$ kJ/mol

Typical Heat Evolution with Time

Heat Evolution with Time

Typical Heat Evolution with Time

Re-set origin: If expt. begins 1-1/2 hrs after batching

Re-set origin: Expt. begins 1-1/2 hrs after batching

28-Day Properties

•Rapid changes in slump & setting = early and short-fuse events

 Hydration just getting good start by end of slump-loss & setting periods

Heat-release and maturity

 continuous functions over entire period

•Tracking changes requires multiple testing specialists, working quickly.

Time (hours to days)

Allen Face's Dictum:

Allen Face's Dictum:

"...down inside [recently cast] concrete,

· Date ·

Allen Face's Dictum:

"...down inside [recently cast] concrete, Wild Things are happening!"

All Finished!