EUROCODES ON CONCRETE STRUCTURES

Opportunities for scientific and technical co-operation in structural concrete

Giuseppe Mancini – Politecnico di Torino fib Honorary President Chairman of CEN/TC250/SC2

General requirements for a design code

- Scientifically founded
- Consistent and coherent
- Transparent
- Able to recognize new developments
- Open minded: models with different refinement degree allowed
- In harmony with existing codes
- ✤ As simple as possible, but not simpler

EN 1992 – Concrete Structures

EN 1992 – Concrete Structures

EN 1992-1-2 General rules – Structural fire design

- EN 1992-2 Concrete bridges Design and detailing rules
- EN 1992-3 Liquid retaining and containment structures

EN 1992-1-1 General Rules and Rules for Buildings

Content:

- 1. General
- 2. Basics
- 3. Materials
- 4. Durability and cover
- 5. Structural analysis
- 6. Ultimate limit states
- 7. Serviceability limit states
- 8. Detailing of reinforcement
- 9. Detailing of members and particular rules
- 10. Additional rules for precast concrete elements and structures
- 11. Lightweight aggregate concrete structures
- 12. Plain and lightly reinforced concrete structures

EN 1992-1-1 General Rules and Rules for Buildings

Annexes:

- A. Modifications of safety factor (*I*)
- B. Formulas for creep and shrinkage (I)
- C. Properties of reinforcement (N)
- D. Prestressing steel relaxation losses (I)
- E. Indicative strength classes for durability (I)
- F. In-plane stress conditions (I)
- G. Soil structure interaction (I)
- H. Global second order effects in structures (I)
- I. Analysis of flat slabs and shear walls (I)
- J. Detailing rules for particular situations (I)

I = Informative

N = Normative

EN 1992-1-1 General Rules and Rules for Buildings

109 National Determined Parameters

(Suggested Values)

National Choice

Chapter 3: Materials

Concrete strength classes

Concrete strength class C12/15 to C90/105. (Characteristic cylinder strength / char. cube strength)

Chapter 3: Materials

Concrete strength classes and properties

	Strength classes for concrete													
f _{ck} (MPa)	12	16	20	25	30	35	40	45	50	55	60	70	80	90
f _{ck,cube} (MPa)	15	20	25	30	37	45	50	55	60	67	75	85	95	105
f _{cm} (MPa)	20	24	28	33	38	43	48	53	58	63	68	78	88	98
f _{ctm} (MPa)	1,6	1,9	2,2	2,6	2,9	3,2	3,5	3,8	4,1	4,2	4,4	4,6	4,8	5,0
f _{ctk,0,05} (MPa)	11	1,3	1,5	1,8	2,0	2,2	2,5	2,7	2,9	3,0	3,1	3,2	3,4	3,5
f _{ctk,0,95} (MPa)	2,0	2,5	2,9	3,3	3,8	4,2	4,6	4,9	5,3	5,5	5,7	6,0	6,3	6,6
E _{cm} (Gpa)	27	29	30	31	32	34	35	36	37	38	39	41	42	44
ε _{c1} (‰)	1,8	1,9	2,0	2,1	2,2	2,25	2,3	2,4	2,45	2,5	2,6	2,7	2,8	2,8
ε _{cu1} (‰)	3,5							3,2	3,0	2,8	2,8	2,8		
ε _{c2} (‰)	2,0							2,2	2,3	2,4	2,5	2,6		
ε _{cu2} (‰)	3,5							3,1	2,9	2,7	2,6	2,6		
n	2,0							1,75	1,6	1,45	1,4	1,4		
ε _{c3} (‰)	1,75						1,8	1,9	2,0	2,2	2,3			
ε _{cu3} (‰)	3,5						3,1	2,9	2,7	2,6	2,6			

9

Chapter 3: Materials

```
Design strength values (3.1.6)
```

- Design compressive strength, f_{cd} $f_{cd} = \alpha_{cc} f_{ck} / \gamma_{c}$
- Design tensile strength, $f_{\rm ctd}$ $f_{\rm ctd} = \alpha_{\rm ct} f_{\rm ctk,0.05} / \gamma_{\rm c}$

 α_{cc} (= 1,0) and α_{ct} (= 1,0) are coefficients to take account of long term effects on the compressive and tensile strengths and of unfavourable effects resulting from the way the load is applied (national choice)

Chapter 4: Durability and cover

Penetration of corrosion stimulating components in concrete

Chapter 4: Durability and cover

Deterioration of concrete

Corrosion of reinforcement by chloride penetration

Chapter 4: Durability and cover

Avoiding corrosion of steel in concrete

Design criteria

- Aggressivity of environment
- Specified service life

Design measures

- Sufficient cover thickness

- Sufficiently low permeability of concrete (in combination with cover thickness)
 - Avoiding harmfull cracks parallel to reinforcing bars
- Other measures like: stainless steel, cathodic protection, coatings, etc.

Chapter 4: Durability and cover

Aggressivity of the environment

Main exposure classes:

The exposure classes are defined in EN206-1. The main classes are:

- XO no risk of corrosion or attack
- XC risk of carbonation induced corrosion
- XD risk of chloride-induced corrosion (other than sea water)
- XS risk of chloride-induced corrosion (sea water)
- XF risk of freeze/thaw attack
- XA chemical attack

Chapter 4: Durability and cover

Procedure to determine cmin,dur

EN 1992-1-1 leaves the choice of $c_{min,dur}$ to the countries, but gives the following recommendation:

The value $c_{min,dur}$ depends on the "structural class", which has to be determined first. If the specified service life is 50 years, the structural class is defined as 4. The "structural class" can be modified in case of the following conditions:

- -The service life is 100 years instead of 50 years
- -The concrete strength is higher than necessary
- Slabs (position of reinforcement not affected by construction process)
- Special quality control measures apply

The final applying service class can be calculated with a table

Chapter 5: Structural Analysis

- Linear elastic analysis
- 1. Suitable for ULS and SLS
- 2. Assumptions:
 - uncracked cross-sections
 - linear σ ϵ relations
 - mean E-modulus
- Effect of imposed deformations in ULS to be calculated with reduced stiffnesses and creep

Chapter 5: Structural Analysis

Linear elastic analysis with limited redistribution

- 1. Valid for $0,5 \le I_1/I_2 \le 2,0$
- 2. Ratio of redistribution δ , with $\delta \ge k_1 + k_2 x_u/d$ for $f_{ck} \le 50$ MPa $\delta \ge k_3 + k_4 x_u/d$ for $f_{ck} > 50$ Mpa $\delta \ge k_5$ for reinforcement class B or C $\delta \ge k_6$ for reinforcement class A

Chapter 5: Structural Analysis

Plastic methods of analysis

Strut and tie analysis (lower bound)

- Suitable for ULS
- Suitable for SLS if compatibility is ensured (direction of struts substantially oriented to compression in elastic analysis)

Chapter 5: Structural Analysis

Nonlinear analysis

"Nonlinear analysis may be used for both ULS and SLS, provided that equilibrium and compatibility are satisfied and an adequate nonlinear behaviour for materials is assumed. The analysis may be first or second order"

Chapter 5: Structural Analysis

- Second order effects with axial loads
- Slenderness criteria for isolated members and buildings (when is 2nd order analysis required?)
- Methods of second order analysis
 - General method based on nonlinear behaviour, including geometric and mechanical nonlinearity
 - Analysis based on nominal stiffness
 - Analysis based on moment magnification factor
 - Analysis based on nominal curvature

Chapter 5: Structural Analysis

Interaction curves for columns of different slenderness, calculated with the general method.

Chapter 5: Structural Analysis Lateral buckling of beams

No lateral buckling if:

- persistent situations:
$$\frac{l_{0t}}{b} \le \frac{50}{(h/b)^{1/3}}$$
 and $h/b \le 2,5$
- transient situations: $\frac{l_{0t}}{b} \le \frac{70}{(h/b)^{1/3}}$ and $h/b \le 3,5$

where:

- *l*_{0t} is the distance between torsional restraints
- *h* is the total depth of beam in central part of l_{0t}
- *b* is the width of compression flange

Chapter 6: Ultimate Limit States

Principles of shear control in EN 1992-1-1

Until a certain shear force $V_{Rd,c}$ no calculated shear reinforcement is necessary (only in beams minimum shear reinforcement is prescribed)

If the design shear force is larger than this value $V_{Rd,c}$ shear reinforcement is necessary for the full design shear force. This shear reinforcement is calculated with the variable inclination truss analogy. To this aim the strut inclination may be chosen between two values (recommended range $1 \le \cot \theta \le 2,5$)

The shear reinforcement may not exceed a defined maximum value to ensure yielding of the shear reinforcement

Chapter 6: Ultimate Limit States

Advantage of variable angle truss analogy

- Freedom of design:
 - Low angle $\boldsymbol{\theta}$ leads to low shear reinforcement
 - High angle θ leads to thin webs, saving concrete and dead weight Optimum choice depends on type of structure
- Transparent equilibrium model, easy in use

Chapter 6: Ultimate Limit States

Non prestressed beams with vertical stirrups – relationship between shear strength and stirrup reinforcement

Chapter 6: Ultimate Limit States

Experimental results of shear tests on prestressed beams with shear reinforcement, in comparison with the calculated results according to the variable strut inclination method,

Chapter 7: Serviceability Limit States

EN 1992-1-1 formulae for crack width control

For the calculation of the maximum (or characteristic) crack width, the difference between steel and concrete deformation has to be calculated for the largest crack distance, which is $s_{r,max} = 2I_t$. So

$$W_{\rm k} = {\rm s}_{\rm r, max} (\varepsilon_{\rm sm} - \varepsilon_{\rm cm})$$

where

is the maximum crack distance

S_{r,max} $(\varepsilon_{sm} - \varepsilon_{cm})$ is the difference in deformation between steel and concrete over the maximum crack distance.

Accurate formulations for $s_{r,max}$ and $(\epsilon_{sm} - \epsilon_{cm})$ are given

Chapter 7: Serviceability Limit States

EN 1992-1-1 requirements for crack width control (recommended vales)

Exposure Class	Reinforced members and prestressed members with unbonded tendons	Prestressed members with bonded tendons			
	Quasi-permanent load combination	Frequent load combination			
X0, XC1	0,41	0,2			
XC2, XC3, XC4		0,2 ²			
XD1, XD2, XS1, XS2, XS3	0,3	Decompression			
 Note 1: For X0, XC1 exposure classes, crack width has no influence on durability and this limit is set to guarantee acceptable appearance. In the absence of appearance conditions this limit may be relaxed. Note 2: For these exposure classes, in addition, decompression should be checked under the quasi-permanent combination of loads. 					

Chapter 7: Serviceability Limit States

Comparison test-calc., acc. to EC2, MC90 and PrEN

Chapter 7: Serviceability Limit States

Calculating the deflection of a concrete member

The deflection follows from: $\delta = \zeta \, \delta_{II} + (1 - \zeta) \, \delta_{I}$

- δ deflection
- $\delta_{\rm I}\,$ deflection fully cracked
- $\delta_{\rm II}$ deflection uncracked

 ζ coefficient for tension stiffening (transition coefficient)

 $\zeta = 1 - \beta \ (\sigma_{sr}/\sigma_s)^2$

- $\sigma_{\text{sr}}~$ steel stress at first cracking
- σ_{s} $\,$ steel stress at quasi permanent service load $\,$
- β 1,0 for single short-term loading
 0,5 for sustained loads or repeated loading

Chapter 8: Detailing of reinforcement

Design anchorage lengt I_{bd}

 $I_{bd} = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 I_{b,rqd} \ge I_{b,min}$

 α_1 effect of bendsFor straight bars $\alpha_1 = 1.0$, otherwise 0.7 α_2 effect of concrete cover $\alpha_2 = 1-0.15(\text{cover} - \phi)/\phi \ge 0.7$ and ≤ 1.0 α_3 effect of confinement by transverse reinforcement (not welded)

 $\alpha_{3} = 1 - K\lambda \ge 0.7 \text{ and } \le 1.0 \text{ where } \lambda = (\Sigma A_{st} - \Sigma A_{st,min})/A_{s}$ $A_{s} \phi_{t}, A_{st}$ $A_{s} \phi_{t}, A_{st}$ K = 0.05 K = 0

 $\begin{array}{ll} \alpha_4 \mbox{ effect of confinement by welded transverse reinforcement } & \alpha_4 = 0.7 \\ \alpha_5 \mbox{ effect of confinement by transverse pressure } \\ \alpha_5 = 1 - 0.04p \ge 0.7 \mbox{ and } \le 1.0 \\ \mbox{ where } p \mbox{ is the transverse pressure (MPa) at ULS along } I_{\rm bd} \\ (\alpha_2, \alpha_3, \alpha_5) \ge 0.7 \qquad I_{\rm b,min} > \max(0.3I_{\rm b}; 15\phi, 100 {\rm mm}) \end{array}$

EN 1992-2 Concrete Bridges

- Linear elastic analysis with limited redistributions

Limitation of $\,\delta\,$ due to uncertaintes on size effect and bending-shear interaction

34

- Plastic analysis

Restrictions due to uncertaintes on size effect and bending-shear interaction:

$$\frac{x_u}{d} \leq$$

0.15 for concrete strength classes \leq C50/60 0.10 for concrete strength classes \geq C55/67

- Rotation capacity

interaction:

Numerical rotation capacity

- Nonlinear analysis \Rightarrow Safety format

Design format

- Incremental analysis from SLS, so to reach $\gamma_G G_k + \gamma_Q Q$ in the same step
- Continuation of incremental procedure up to the peak strength of the structure, in corrispondance of ultimate load q_{ud}
- Evaluation of structural strength by use of a global safety factor γ_0

Verification of one of the following inequalities

$$\gamma_{Rd} E\left(\gamma_G G + \gamma_Q Q\right) \le R\left(\frac{q_{ud}}{\gamma_O}\right)$$

$$E\left(\gamma_{G}G + \gamma_{Q}Q\right) \leq R\left(\frac{q_{ud}}{\gamma_{Rd} \cdot \gamma_{O}}\right)$$

(i.e.)
$$R\left(\frac{q_{ud}}{\gamma_{O'}}\right)$$

$$\gamma_{Rd}\gamma_{Sd}E\left(\gamma_{g}G+\gamma_{q}Q\right)\leq R\left(\frac{q_{ud}}{\gamma_{O}}\right)$$

Nith
$$\gamma_{Rd}$$
 = 1.06 partial factor for model uncertainties (resistence side)Nith γ_{Sd} = 1.15 partial factor for model uncertainties (actions side) γ_0 = 1.20 structural safety factor

If $\gamma_{Rd} = 1.00$ then $\gamma_{0'} = 1.27$ is the structural safety factor

Section $6 \Rightarrow$ Ultimate limit state (ULS)

- Robustness criteria for prestressed structures

3 different approaches

a) Verification of load capacity with a reduced area of prestressing

- Evaluation of bending moment in frequent combination of actions: M_{freq}
- Reduction of prestressing up the reaching of f_{ctm} at the extreme tensed fibre, in presence of M_{freq}
- Evaluation of resisting bending moment M_{Rd} with reduced prestressing and check that:

$$M_{Rd} > M_{freq}$$

Redistributions can be applied

Material partial safety factors as for accidental combinations

b) Verification with nil residual prestressing

Provide a minimum reinforcement so that

$$A_{s,\min} = \frac{M_{rep}}{z_s f_{yk}} \left(-\frac{A_p \cdot \Delta \sigma_p}{f_{yk}} \right)$$
 $\Delta \sigma_p < 0.4 f_{ptk} \text{ and } 500 \text{ MPa}$

where M_{rep} is the cracking bending moment evaluated with f_{ctx} (f_{ctm} recommended)

c) Estabilish an appropriate inspection regime (External tendons!)

- Bending-shear behaviour of segmental precast bridges with external prestressing (only)

Field A : arrangement of stirrups with θ_{max} (cot $\theta = 1.0$) Field B : arrangement of stirrups with θ_{min} (cot $\theta = 2.5$)

- Bending-shear-torsion behaviour of segmental precast bridges with external prestressing (only)

Design the shear keys so that circulatory torsion can be maintained !

- Fatigue

• λ values semplified approach (Annex NN, from ENV 1992-2)

Application of Miner rule

$$\sum_{i=1}^{m} \frac{n_i}{N_i} \le 1$$

$$N_{i} \implies \begin{pmatrix} \text{Given by national authorities (S-N curves)} \\ N_{i} = 10 \exp\left(14 \cdot \frac{1 - E_{cd, \max, i}}{\sqrt{1 - R_{i}}}\right) \end{pmatrix}$$

where:
$$R_i = \frac{E_{cd,\min,i}}{E_{cd,\max,i}}$$
; $E_{cd,\min,i} = \frac{\sigma_{cd,\min,i}}{f_{cd,fat}}$; $E_{cd,\max,i} = \frac{\sigma_{cd,\max,i}}{f_{cd,fat}}$
 $f_{cd,fat} = k_1 \beta_{cc} (t_0) f_{cd} \left(1 - \frac{f_{ck}}{250}\right)$
 $K_1 = 0.85$ (Recommended value)

- Compressive stress field strength defined as a function of principal stresses
- If both principal stresses are compressive

$$\sigma_{cd \max} = 0.85 f_{cd} \frac{1+3,80\alpha}{(1+\alpha)^2}$$
 is the ratio between the two principal stresses ($\alpha \le 1$)

 Where a plastic analysis has been carried out with θ = θ_{el} and at least one principal stress is in tension and no reinforcement yields

$$\sigma_{cd \max} = f_{cd} \left[0,85 - \frac{\sigma_s}{f_{yd}} (0,85 - \nu) \right]$$

is the maximum tensile stress
value in the reinforcement

Where a plastic analysis is carried out with yielding of any reinforcement

$$\sigma_{cd \max} = \nu f_{cd} \left(1 - 0.032 \left| \theta - \theta_{el} \right| \right)$$

is the angle to the X axis of plastic compression field at ULS (principal compressive stress)

 $\left| \theta - \theta_{el} \right| \leq 15$ degrees

is the inclination to the X axis of principal compressive stress in the elastic analysis

FLORIANOPOLIS 3 November 2011

Prof. Giuseppe Mancini - Politecnico di Torino

Experimental versus calculated panel strenght by Marti and Kaufmann (a) and by Carbone, Giordano and Mancini (b)

Section 8 ⇒ Detailing of reinforcement and prestressing tendons

- Couplers for prestressing tendons
- In the same section maximum 67% of coupled tendons
- For more than 50% of coupled tendons:

Continous minimum reinforcement or Residual stress > 3 MPa in characteristic combination

- Minimum distance of sections in which couplers are used

Construction depth h	Distance a
≤ 1,5 m	1,5 m
1,5 m < h < 3,0 m	a = h
≥ 3,0 m	3,0 m

 For tendons anchored at a construction joint a minimum residual compressive stress of 3 MPa is required under the frequent combination of actions, otherwise reinforcement should be provided to carter for the local tension behind the anchor

Annex KK ⇒ Structural effects of time dependent behaviour of concrete

Assumptions

Creep and shrinkage indipendent of each other

Average values for creep and shrinkage within the section

Validity of principle of superposition (Mc-Henry)

Type of analysis	Comment and typical application			
General and incremental step-by-step method	These are general methods and are applicable to all structures. Particularly useful for verification at intermediate stages of construction in structures in which properties vary along the length (e.g.) cantilever construction.			
Methods based on the theorems of linear viscoelasticity	Applicable to homogeneous structures with rigid restraints.			
The ageing coefficient method	This mehod will be useful when only the long-term distribution of forces and stresses are required. Applicable to bridges with composite sections (precast beams and in-situ concrete slabs).			
Simplified ageing coefficient method	Applicable to structures that undergo changes in support conditions (e.g.) spanto-to-span or free cantilever construction.			

Annex LL \Rightarrow Concrete shell elements

A powerfull tool to design 2D elements

FLORIANOPOLIS 3 November 2011

Prof. Giuseppe Mancini - Politecnico di Torino

Annex $MM \Rightarrow$ Shear and transverse bending

FLORIANOPOLIS 3 November 2011

Prof. Giuseppe Mancini - Politecnico di Torino

Modified sandwich model

FLORIANOPOLIS 3 November 2011

Prof. Giuseppe Mancini - Politecnico di Torino

EN 1992 – i

A complete set of codes for sustainable design of concrete structures