Alkali-aggregate Reactions in Concrete

- A review -

Benoit Fournier

ONCRETC

AAR → one of many deleterious mechanisms affecting the durability of concrete

First report of AAR

- 1930's in the Monterey and Los Angeles counties (Californie)
- Thomas Stanton, Caltrans

Structures affected by AAR all around the world

South Africa

Alkali Aggregate Reaction

General Guidelines for Minimising the Potential Risk of Deleterious Expansion in Concrete Structures due to Alkali-Silica Reaction A864-00 Guide to the Evaluation and Management of Concrete Structures Affected by Alkali-Aggregate Reaction

Thousands of papers, reports, specifications of midelines

Strategic Highway Bossarch Program

Pore fluid in concrete:

- Mainly composed of K+, Na+ and OH- → pH ≥ 12.4
- Some mineral phases unstable in ↑ pH conditions → alkaliaggregate reactions

- Alkalis from *≠* sources:
 - **Cement (mainly)**
 - Aggregates (~ long term)
 - Other cementitious materials
 - > Chemical admixtures
 - sea water, deicing chemicals

Alkali-Silica Reaction

- Most common form of AAR
- Reaction between concrete pore fluid (↑ pH) and <u>siliceous phases</u> from aggregates

Alkali-Silica Reaction

- Deleterious reaction produces secondary reaction product → alkali-silica gel
- Gel swells in the presence of moisture

Alkali-Silica Reaction

 Internal expansion forces → cracking and distress of concrete

Alkali-Carbonate Reaction

- <u>Limited</u> cases from Canada, USA, China, Austria
- "Classical" ACR in Canada: argillaceous dolomitic limestone

Time for Distress Due to AAR • Less than 2 to more than 25 years • **Depends on various factors Reactive Material** in the aggregates How serious is the problem ?? Sufficient Sufficient

Sufficient Alkali

Moisture

AAR – the Problem

• Very few cases of structures demolished essentially because of AAR

AAR – the Problem

- Extensive cracking → durability issues (rebar corrosion)
- Differential expansion and movements in critical structures (bridges, dams) → operational issues → repairs and \$\$\$\$

Paulo Afonso Hydro Generating Complex, Brazil

ASR Damage Channel Islands - USA

Built in 1989 - \$14M to Rebuild (Photos c. 1993, courtesy ANG)

Sherman (2006)

AAR Must be Prevented !!

In 2010, there is no excuse to construct a structure at risk of AAR !

- 1. Properly recognize the potential alkali-reactivity of aggregate
- 2. Select and use appropriate preventive action(s) in the presence of reactive aggregates

- $\uparrow \mathbf{T}^{\mathbf{0}}$
- ↑ alkali content
- ↓ particle size

- Structure > 10 years old
- Structure incorporating high alkali levels
- Structure exposed to severe conditions (moisture)
- No "preventive measures" used (pozzolans, etc.)

Petrographic Examination

• Essential step:

- Nature of aggregate (ACR, ASR)
- Select best test to perform
- Risky to accept/reject aggregates based on petrographic examination only.

Accelerated Mortar Bar Test → ASR

- Mortar bars, 25 x 25 x 285 mm in size
- Particle size: 0.15 4.75mm

Accelerated Mortar Bar Test → ASR

- Immersed 1N NaOH @ 80°C for 14 days
- Severe test conditions;

 good screening test
 Not to be used for rejecting aggregates

Accelerated Mortar Bar Test (AMBT)

Concrete Prism Test → ASR & ACR

- Concrete prisms, 75 x 75 x 300-400 mm in size
- Cement content of 420 kg/m³
- Particle size: -20 + 5 mm
- Alkalis boosted to 1.25% Na₂Oeq, by cement mass

Concrete Prism Test → ASR & ACR

Prisms stored at 38°C and R.H. > 95%

Concrete Prism Test (CPT)

Storage Conditions (60°C) – "Reactor"

"Reactor" and Steel boxes

"Reactor" and Plastic pails

ACPT (60°C) vs Conventional (38°C) CPT

Preventive Measures Against ASR

Reactive Material in the aggregates

Sufficient Moisture

Preventive Measures Against ASR

- Use non-reactive aggregate
 - » Not always possible; not available; transport NR aggregates over long distances → \$\$\$, GHG emissions !
 - » Selective quarrying
 - » Aggregate beneficiation

Limiting the alkali content in concrete

Preventive Measures Control the alkali content of the concrete mixture ???

Internal contribution from aggregates !!

Internal contribution from seadredged sand

Supplementary cementing materials

Preventive Measures Against ASR Use a sufficient amount of efficient SCM(s)

Blast furnace

Field Performance of FA Concrete Hydraulic dams (Northern Ontario, Canada)

Conventional concrete → **no SCMs**

Field Performance of FA Concrete Hydraulic dams (Northern Ontario, Canada)

High-alkali cement + 30% Class F FA

Field Performance of FA Concrete Lower Notch dam (Northern Ontario, Canada)

Pavement sections (New Mexico, USA) (1992)

Source : www.google.maps.com

Pavement sections (New Mexico, USA)

East

West

Source : USDOT, 2006

Field performance of fly ash concrete

 Pavement sections (New Mexico, USA) (15 years)

Mix of Class C & F fly ashes

Field performance of fly ash concrete

 Pavement sections (New Mexico, USA) (15 years)

Effect of FA Composition on ASR Expansion

• Mixtures with 25% fly ashes

Effect of FA Composition on ASR Expansion

Efficacy against ASR \downarrow with \uparrow %CaO and %Na₂Oe

Effect of FA Composition & Proportion on ASR Expansion

Effec of fly ash composition on the chemistry of the concrete pore solution *Cement paste with high-alkali cement & 25% FA*

Silica Fume against ASR

Particles $0.1 - 2 \mu m$

Fournier et al. 1995

Metakaolin against ASR

Moderately-reactive aggregate

Highly-reactive aggregate

Ramlochan et al. 2000

Effect of Slag on ASR Expansion

Preventive Measures Against ASR

• Use a sufficient amount of a chemical admixture (lithiumbased product)

Lithium-based admixtures History and Background

McCoy and Caldwell (1951) \rightarrow lithium compounds (LiF, Li₂CO₃, LiCl et LiNO₃) can suppress expansion due to ASR.

Renewed interest in lithium compounds, starting late 1980's

Thomas & Folliard (2002)

Factors Influencing the Effectiveness of Lithium to Reduce ASR Expansion

- Alkali loading and nature of the reactive aggregate
- The main factor is the <u>ratio lithium : alkali content</u> <u>of the concrete mixture</u>

i.e. Molar ratio [Li] / (Na + K)

Alkalis in the concrete mixture

Factors Influencing the Effectiveness of Lithium to Reduce ASR Expansion

- Alkali loading and nature of the reactive aggregate
- The main factor is the <u>ratio lithium : alkali content</u> of the concrete mixture i.e. Molar ratio [Li] / [Na + K] Alkalis in the concrete mixture

Earlier research \rightarrow [Li]/[Na + K] of <u>0.74</u> is OK with a large number of reactive aggregates \rightarrow "Standard Dosage"

Lithium-based Admixtures

- Standard Dosage \rightarrow molar ratio of 0.74
- 1 kg of LiOH•H₂O / kg of Na₂Oeq in the concrete
- 4.6 L of LiNO₃ solution / kg of Na₂Oeq in the concrete

Use of <u>Lithium</u> to control ASR expansion Exposure blocks

Preventive Measures Against ASR

• Amount of lithiumbased product needed varies depending on the reactive aggregate

(Tremblay et al. 2007)

Accelerated testing for lithium dosage

- CPT is the preferred test \rightarrow <u>2-year</u>, 0.04% exp limit)
- <u>Modified</u> version of AMBT
 - Lithium to be added in the bar and the soak solution
 - Expansion limit ~ 0.10% @ 28 days

To control leaching, ASTM C 1260 is modified by adding Li to the soak solution

Modified AMBT – proposed approach

Begin by Testing the Aggregate with the following two mixtures :

- **1.** Control mixture (Expansion at 28 days = E1)
- 2. Mixture with lithium : [Li]/[Na+K] = 0.74 in bar and [Li]/[Na]=0.148 in soak solution (Expansion at 28 days = E2)

Tremblay et al. (2008)

Modified AMBT – proposed approach

Tremblay et al. (2008)

How does lithium help?

- Formation of a "stable" lithium silicate that "protects" the silica from attack by the alkali and hydroxil ions.
- Presence of lithium ions would reduce the dissolution of silica from reactive material.
- Formation of a non-swelling lithium-based reaction product (gel)

Summary on Preventing AAR

- For assuring long-term performance of concrete infrastructures → risk of deleterious expansion and cracking in concrete due to AAR <u>should</u> be prevented
- Preventing ACR → reject the aggregate !!

• Preventing ASR:

- » Use of non-reactive aggregates
- » Use appropriate amount of fly ash (minimum 20-30% Class Fly ash), slag (minimum 35%) or combinations of the above (ternary systems !); better concrete !!
- » Use appropriate amount of chemical admixture (e.g. LiNO₃) → aggregate type, long term ?, \$\$

Summary on Preventing AAR

Select preventive measures :

- Prescriptive approach → risk analysis
 - Reactivity of the aggregate
 - Nature of the structure (includes. design life)
 - Exposure conditions
- Performance approach → testing in the laboratory

Report on Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction

How and When to Repair AAR-affected Concrete Structure??

Selecting the right time and the right method for mitigation

Treat the cause \rightarrow

, Humidity

silica,

Alkalis

Reactive

- Control of moisture
- Chemical treatments —>
- Strenghtening
- Stress relief

Control the effect → expansion

Evaluation of Mitigating measures in concrete structures affected by ASR (FHWA, USA)

Federal Highway Administration

FEBERAL HIGHWAY

Concrete Pavement Engineer

1200 New Jersey Avenue, SE

Washington, D.C. 20590

gina.ahistrom@dot.gov

(202) 365-4612

FHWA - Office of Pavement

ADMINISTRATION

Gina M. Ahistrom

Technology

Selection, Implementation, and Evaluation of Field Application and Demonstration Projects

Under the ASR Development and Deployment program several field application and demonstration projects will be

deployed to determine which

technologies work best in

The Federal Highway Administration's (FHWA) Alkali-Silica Reactivity (ASR) Development and Deployment Program will focus on the use of different prevention and mitigation techniques for new and existing concrete pavements and structures. This effort will address the specific concrete durability distress mechanism of ASR. Through past research efforts, certain technologies now exist that may help prevent or mitigate the nation's ASR problem.

Electrochemical treatment on ASRaffected columns in Houston, TX

preventing and mitigating ASR. FHWA will take the research "out of the lab" and deploy this knowledge in the field.

The FHWA will assist state departments of transportation (DOT) in executing ASR field trials by:

- Providing technical guidance (including presentations and training).
- Working together with the state DOT in selecting the appropriate treatment for the structure in question.
- Providing appropriate federal funds for prevention and mitigation techniques.
- Instrumenting the structure for data collection,
- Designing and implementing monitoring programs, .
 - Evaluating and collecting data from the field site, and
- Analyzing data to determine the efficacy of the technology used.

Want your state to participate?

For more details and requirements contact Gina Ahlstrom at gina.ahlstrom@dot.gov or at (202)366-4612.

affected payement near Mountain Home, ID (top); Vacuum Impregnation treatment on ASR-effected highway barriers near Leominster,

ASTH (American Society for Testing and Haterlais) CI203 Laboratory

Protocol for Selecting Alkali-Silica Reaction (ASR)-Affected Structures

TECHBRIEF

2

Technology

Research Center

www.tfhrc.gov

U.S. Department of Transportation

Turner-Fairbank Highway

6300 Georgetown Pike

McLean, VA 22101-2296

Federal Highway Administration

Research, Development, and

Mitale VA 22101-2256

Protocol for Selecting ASR-Affected Structures for Lithium Treatment

Publication No. FHWA-HRT-06-071

FHWA Contact: Fred Faridazar, HRDI-11, 202-493-3076, fred.faridazar@fhwa.dot.gov.

Objective

This TechBrief describes a protocol for evaluating damaged concrete structures to determine whether they are suitable candidates for lithium treatment to address alkali-silica reaction (ASR). A major part of the TechBrief's source document, Protocol for Selecting Alkali-Silica Reaction (ASR)-Affected Structures for Lithium Treatment (FHWA-HRT-04-113), deals with the approach/tools that can be used to determine whether ASR is the principal cause, or only a contributing factor to, the observed deterioration (diagnosis); determine the extent of deterioration due to ASR in the structure; and evaluate the potential for future expansion due to ASR (prognosis). A full version of the report is available through the Federal Highway Administration (FHWA).⁽¹⁾

Introduction

Three conditions are necessary to initiate and sustain ASR in concrete (as shown in figure 1):

 A sufficient amount of reactive siliceous phase(s) must be present in the aggregate.

The concentration of alkali hydroxides (sodium (Na⁺). potassium (K+), hydroxide (OH-)) in the concrete pore solution must be high enough.

Sufficient moisture must be present.

Figure 1. The three necessary components for ASR-induced damage in concrete

Georgetown – Delaware (June 23-25, 2009)

Highway 113 North of Georgetown

Concrete pavement (**Delaware**)

Monitoring efficacy in-situ → crack mapping

	1	2	3	4	5	Base	#	Crack opening (mm)			
Interval	6	7	8	9	10	length	cracks	Total	Avg. /	Avg. /	Global
	11	12	13	14		(m)		cumulative	crack	m	Average (CI)
OA	0.1, 0.1	0.8			1.9	1	6	4.8	0.8	4.8	3,39
	1.2			0.7							
OB	0.05	0.05		0.05	0.05	1	7	0.8	0.11	0.8	
		0.3	0.2	0.1							
			0.3, 0.5	0.4	0.3						5.59
OC	1.4	0.3			2.4	1.4	7	5.6	0.8	4.0	
	0.5	0.2			0.3						
AB	0.05	1.5	0.1, 0.2		2.2	1.4	8	5.05	0.63	3.6	

Dimensional changes measurements

Georgetown – Delaware (June 23-25, 2009)

Highway 113 North of Georgetown

Treatment → LiNO₃ application (3 gal / 1000 ft²) → limited penetration depth

Maine: I395 (Bangor / Brewer)

Damage Rating Index (DRI)

ASR Petrographic Features & Associated Factors

Petrographic feature	Abbreviation	Factor
Coarse aggregate with crack	CA	0.25
Open crack in coarse aggregate	OCA	4
Coarse aggregate with crack and gel	CA+G	2
Debonding coarse aggregate	DCA	3
Reaction rim	RR	0.5
Cement paste with crack	CP	2
Cement paste with crack and gel	CP+G	4
Gel in air void	V+G	0.5

Grattan-Bellew and Danay (1992)

Electrochemical treatment (LiNO₃)

Hydro-Québec Electrical towers Québec City

Hydro-Québec Electrical towers Québec City

• Symptoms of deterioration

(Durand 2000)

Management Actions on AAR Affected Concrete Structures

 Hydro-Québec Electrical towers Québec City

Median (Jersey) barriers, Leominster, MA

Median (Jersey) barriers, Leominster, MA

- Control sections
- Vacuum impregnation (LiNO₃)
- Topical application (silane, LiNO₃)

Median (Jersey) barriers → vacuum impregnation

Median (Jersey) barriers → topical application (silane, LiNO₃)

Topical applications (silane, $LiNO_3$), June 2005 \rightarrow May 2010

2x Lithium topical + silane

a tol

Control

Topical applications (silane, $LiNO_3$), June 2005 \rightarrow May 2010

4x Lithium topical

Control

2x Lithium topical + silane

Median (Jersey) barriers → sampling (Li profiling)

Median (Jersey) barriers \rightarrow efficacy vacuum treatment

Median (Jersey) barriers \rightarrow 4 LiNO₃ topical treatments

Use of Sealers (Quebec City, Canada) – early 1990's

Courtesy of M.A. Bérubé

early 1990's

Courtesy of M.A. Bérubé

Bridge structure – Houston, TX (USA) (2005)

Vacuum impregnation LiNO₃

Electrochemical treatment

Column #45 Penetration depth after vacuum treatment

Column #46-1 - Electrochemical treatment

8-week treatment before sampling over rebars

Plan

Profiles for Li, Na & K ions in the column (electrochemical treatment)

46-1 @ Rebar

Conclusions

• Strong measures should be applied to prevent AAR in new concrete constructions

- » Testing of aggregate combinations
- » Application of appropriate preventive measures
- Critical challenge for engineers → how to manage concrete structures affected by AAR !?
 - » Proper diagnosis of the source of the problem
 - » Establish prognosis → expansion to date and for future → select appropriate management action

Thank you very much

for your attention !! Muito obrigado !!

111

Mactaquac Dam, Eastern Canada

Diversion sluiceway

Main spillway

Powerhouse

Intake

Main Dam

Mactaquac Dam, Eastern Canada

- Aggregate accepted for use based on ASTM C 227 !!!!
- Vertical growing of the intake structure \rightarrow ~ 18 cm
- Deformation rate $\rightarrow \sim 120$ to 150 µ ϵ /an
- Expenses for ASR-related repairs → ~ \$6M / year (>75M\$)
- 1 Billion \$ to rebuild (2020)

Intake structure

Mactaquac Dam, Eastern Canada

Mactaquac Dam, Eastern Canada

Stress relief

Temporary solution for structures where AAR has not ceased → recutting often required