Bridge reinforced concrete column limit state definition

Danusa H. Tavares

Authors: D. H. Tavares, L. I. Cardona and P. Paultre

Presentation Plan

- Introduction
- Limit States LS
 - Qualitative LS Damage States
 - Quantitative LS
- Chemin des Dalles Bridge Column
 - Sectional Analysis
 - Damage Mechanics Analysis
 - Limit States Definition
 - Fragility Curves
- Conclusion

Introduction

- Performance-based earthquake engineering (PBEE)
 - Service Performance Level small-magnitude earthquake
 - Intermediary levels
 - No Collapse Performance Level high-magnitude earthquake
- □ Seismic Risk Assessment HAZUS 2003
 - Slight
 - Moderate
 - Extensive
 - Complete

Qualitative Limit States

- Basöz 1999

	Damage State		Description
L	0 No damage		No damage to the structure.
	1	Minor	Hairline cracks. Cracks at column top and bottom (1.4 to 1.6mm). Spalls at column faces, spalled column flares (flare ratio = < 1/3 or adequate reinforcement exists). Flare is the relation of height and column height. Cracks at bent cap connection.
Moderate Flexural failure (formation of plastic hinges, but a length of one column diameter.		Moderate	Spalled column flares (flare ratio < 1/3 or inadequate reinforcement exists). Flexural failure (formation of plastic hinges, buckling of longitudinal reinforcement over
	3	Severe	Shear failure Flexural failure without formation of plastic hinges due to inadequate confinement (due to steel rupture or broken welds), inadequate anchorage of the steel, inadequate lap splices. Vertical pull of the longitudinal column reinforcement. Ground displacement at column base. Tilting of substructure due to foundation failure.
	4	Collapse	Column collapse.

Quantitative Limit States

Dutta and Mander 1998

Damage State	Non-seismically defined	Seismically defined	
1 First Yield	θ_y	θ_{y}	
2 Cracking, Spalling	0.008	0.010	
3 Loss of Anchorage	0.010	0.025	
4 Incipient Pier Collapse	0.020	0.050	
5 Pier Collapse	0.050	0.075	

Quantitative Limit States

EfiCoS

Tension damage (*) index (Dt)	Drift, δ _θ (%)	Qualitative (SEAOC, 1995)
≈ 0	< 0.05	Fully Operational
0.5 to ≈ 1.0 (near to total spalling)	≈ 0.1 to 0.4	Fully Operational

(*): Measured by EFiCoS over the concrete cover response of column.

Compression (**) damage index (D)	Drift, δ_{θ} (%)	Qualitative (SEAOC, 1995)	
≈ 0	< 0.2	Fully Operational	
< 0.10	0.2 to 0.5	Operational	
0.1 to 0.6	0.5 to 1.5	Life Safety	
0.6 to 0.9 (near to total crushing)	1.5 to 2.5	Near Collapse	
> 0.9	> 2.5	Collapse	

(**): Measured by EFiCoS over the concrete core response of column.

Quantitative Limit States

Hwang 2001

$$\mu_d = \frac{\Delta}{\Delta_{cy1}}$$

Damage State	Displacement ductility ratio	Median Value
Slight	μ_{cy1}	1.0
Moderate	μ_{cy}	1.2
Extensive	μ_{c2}	1.76
Complete	$\mu_{c ext{-max}}$	4.76

Quantitative Limit States

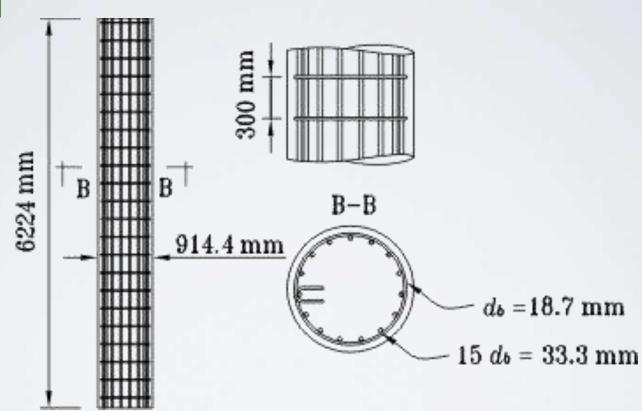
Georgia Institute of Technology

Damage states	Choi (2002)	Choi (2004)	Nielson (2005)	Padgett (2007)
Туре	Displacement Ductility	Curvature Ductility	Curvature Ductility	Curvature Ductility
Slight damage	1.0<. <i>µ</i> <1.2	1.0<. <i>µ</i> <2.0	1.0<. μ<1.58	1.29<. μ <2.10
Moderate damage	1.2<. <i>μ</i> <1.76	2.0<. <i>μ</i> <4.0	1.58<. <i>μ</i> <3.22	2.10<. <i>μ</i> <3.52
Extensive damage	1.76<. <i>μ</i> <4.76	4.0<. <i>μ</i> <7.0	3.22<. <i>μ</i> <6.84	3.52<. <i>μ</i> <5.24
Complete damage	4.76<. μ	7.0<. μ	6.84<. µ	5.24<. μ

Curvature Ductility:

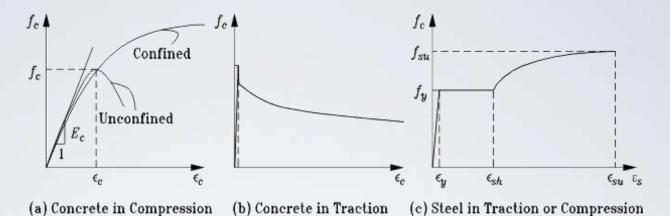
$$\mu_{\phi} = 1 + \frac{\mu_{\Delta} - 1}{3 \frac{l_{p}}{l} \left(1 - 0.5 \frac{l_{p}}{l} \right)}$$

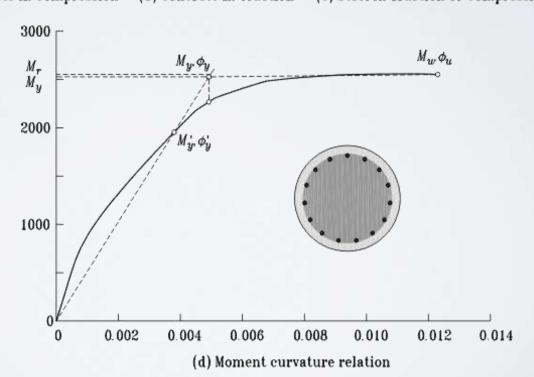
$$l_p = (0.08)l + 9d_b$$

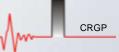


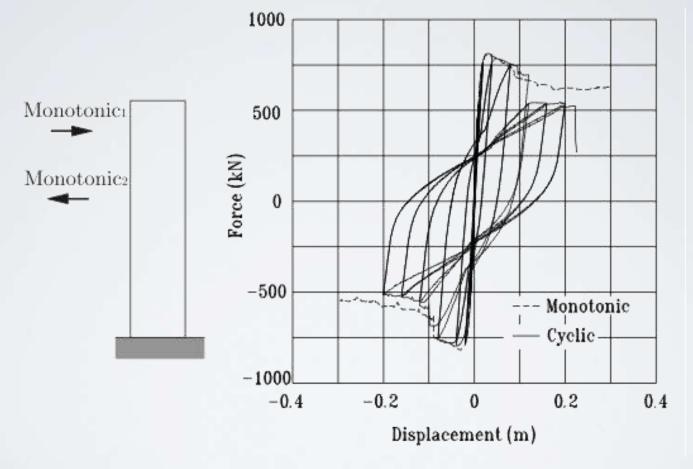
Column Description

N=2054kN



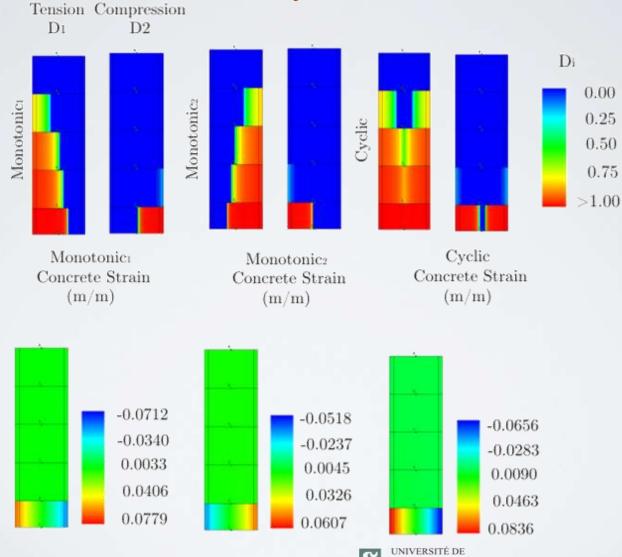



SectionalAnalysis



Damage Mechanics Analysis

EFiCoS



Damage Mechanics Analysis

EFiCoS

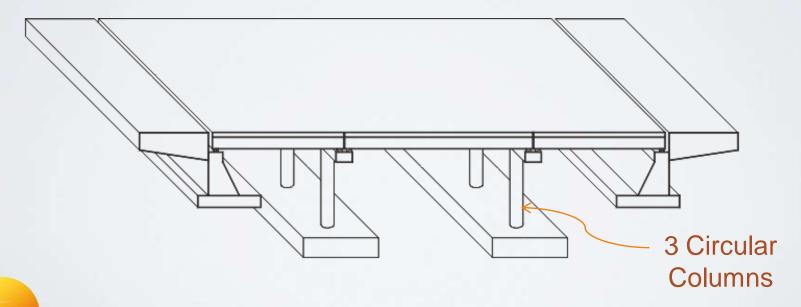
SHERBROOKE

CRGP

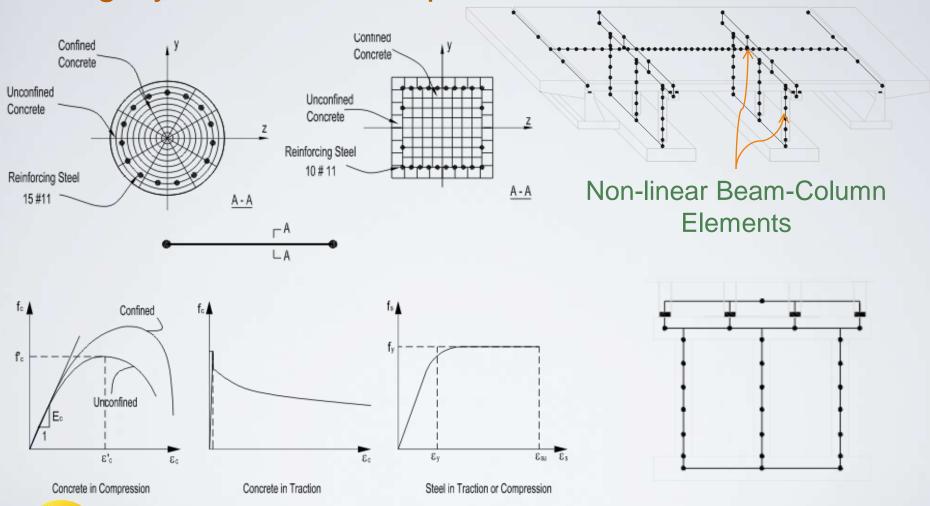
Damage Mechanics Analysis

EFiCoS

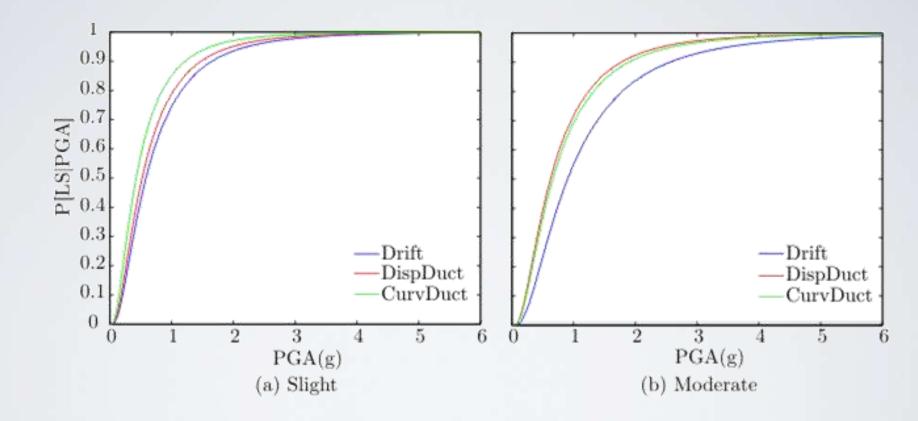
Onelitative Parameter	Load Case – Displacement at half height of the real Column (m)			
Qualitative Parameter	Monotonic (→)	Monotonic (←)	Cyclic	
Concrete first cracking	0.002	0.002	0.002	
Concrete significant spalling, (DT > 0.5)	0.003	0.003	0.003	
Concrete significant compression damage (+), (DC > 0.5)	0.034	0.034	0.036	
Reinforcement rebar yielding	0.013	0.014	0.013	
Reinforcement rebar buckling	0.086	0.088	0.095	



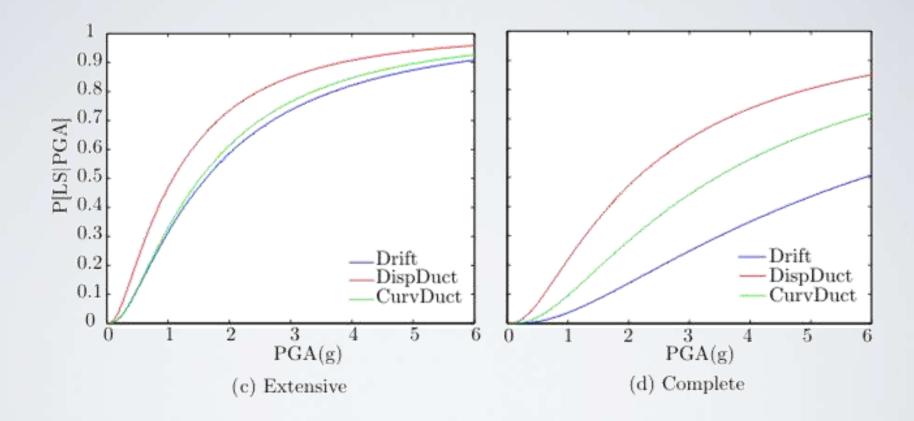
Limit States Definition


Damage State	Service Level	Damage Index Comp. and Tension	Drift, δ_{θ}	Displacement Ductility	Curvature Ductility
Slight	Fully Operational	$DC = 0.1 DT \approx 0.0$	0.005	1.0	1.0
Moderate	Operational	DC = 0.2	0.007	1.15	1.50
Extensive	-	DC = 0.5 DT = 0.5	0.011	1.76	3.22
Complete	Stability	DC = 0.9 DT = 0.9	0.030	3.0	6.84

Fragility Curves Development



Fragility Curves Development



Fragility Curves Development

Conclusion

- Three quantitative LS were defined for the Chemin des Dalles Bridge column.
- To evaluate the effectiveness of these LS, fragility curves were constructed for this column.
- The LS defined in this study are similar to those defined in the literature for slight and moderate damage
- But these values tend to differ for the intermediate values. Even less agreement can be found in the definition of the complete damage state
- From the fragility analysis all three LS were found to properly represent the capacity of the bridge.

Conclusion

- Due to practical reasons, the LS related to displacements are easier to be implemented than the curvature ductility.
- In the case of one bridge, drift and displacement ductility are found to represent the capacity in the same way
- But, the drift LS are found to be more suitable than the displacement ductility when the fragility analysis involves bridges with different columns sections.
- •Most of the inconsistencies were found in the complete limit state, as it was expected due to the complexity of the failure mechanisms.

Questions?

Thank you! Obrigada!

