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Built forever!?
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B52 – Built to fly 100 years?
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Design Principles for Structures
100%

50%
0%Stress Without inspection of the component

(no corrosion effects considered)

Safe Life
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Log cycles
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Inspectable

crack possible

Damage tolerance

Fracture With inspection of the component
(no corrosion effects considered)
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Log cycles

Short cracks Slow crack 
propagation

Fail safe

Endurance limit 
Safe
Life
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Estimation of damage accumulation
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III. Rainflow matrix
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Crack length
Number of cycles or time
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Steps to be considered for crack 
propagation calculation

1. Initial crack length a0

2 Y factor
For example:

2. Y factor
3. Load (stress)
4. K value
5. Crack propagation 

equation (i.e. Forman)
6. Crack extension ∆a

w
aY πsec=

aYKI πσ=
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7. a = a0+∆a & back to 
step 1 with a0 = a ( ) KKR

KC
dN
da
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Influence of Stringers on Fracture
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Source: A. Grant: Fundamentals of 
Structural Integrity
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Fatigue Design

Airframe Fatigue Design Principles

Safe Life Design Damage Tolerant Design

Fail Safe
Slow Crack 
Propagation

How much
potential left?
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Crack Stopper
Multiple 
Load Path

Ageing bridge infrastructure in Germany 

Autobahn

National

Ageing bridge infrastructure in Germany over the last century
Bridges and highways

Age of structure relative to the number of constructions [%] (Date: 31.12.2005, source BASt)
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• More traffic
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BUT

2008 Civil infrastructure 
remained
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Civil infrastructure - An issue for monitoring
• Bridges

• Pipelines and processing industry

• Power supply (e. g. supply lines, wind energy 

Example: bridge area in 106 m2 in Germany sorted by type of construction:

plants)

• Dams

• Buildings of the early ages of reinforced concrete

• Tunnels

• Waste refilling

• Cultural heritage
0,16

5,14

1,381,840,02
Steel
Composite
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Date 31.12.2005, source BASt

g

• Others
19,39

Stone
Concrete
Prestressed Concrete
Wood

Options and challenges for life cycle 
management

Options: Challenges:

• Sensors and miniaturisation

• Robotics

• Enhanced computation power

• Internet

• Wireless data communication

• CAE simulation

P ti

• New materials

• Higher loads

• Global warming

• Criminal threats and security policies

• Regulations

• Possibly others

© C. Boller, Fraunhofer IZFP
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• Prognostics

• Risk assessment

• Life cycle cost analysis
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BetoScan: self navigating mobile robot

Batteries

BetoScan

Sensors 

Robot with 
2 computer 
systems
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Air temperature 
and 
humidity

Concrete 
humidity 
(surface)

Concrete 
humidity 
(volume)

Concrete 
coverage Geometry information Reinforcement 

information Corrosion risk

Hytelog Hf MOIST RP, 
microwave

Hf MOIST PP, 
microwave

Profometer, eddy 
current

Acsys A1220, 
ultrasound Mala ProEx, radar Canin, potential 

(resistivity)

BetoScan: multi-sensor data acquisition

BetoScan
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OOnnSSite ite SCASCAnnenneRR

OSSCAR
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www.vdivde-it.de/innonet

OOnnSSite ite SCASCAnnenneRR

OSSCAR

Reinforcement 

Data cube also called OLAP (Online 
Analytical Processing) cube data 
format

© C. Boller, Fraunhofer IZFP
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information Geometry information Concrete coverage

Mala ProEx, radar Acsys A1220, ultrasound Profometer, eddy current Generalized data 
concept
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OOnnSSite ite SCASCAnnenneRR

OSSCAR

Data acquisition and
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Data acquisition and 
motion control

Data analysis: comparison, fusion, joint-inversion

Data fusion: 

Outlook data analysis

Test specimen before 
placing of concrete

Fused image of NDT data 
measured at specimen on the 
left

Source: BAM Berlin

combination of multiple 
source data to achieve 
inferences

Joint inversion or multi-

© C. Boller, Fraunhofer IZFP
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objective optimization: 
finding model that 
explains several data 
sets at once Data cube Function container
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Visualisation of inner parts of constructions
Ultrasound measurements on a concrete deck

© C. Boller, Fraunhofer IZFP
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Source: Alexander Taffe, BAM Berlin

Diagnosis of prestressed tendons

Magnetic rotating head scanner

Rotating speed: 2Hz
Linear speed: 720m/h
Rotor diameter: 3.5m

electromagnet

magnetic sensors

sensor traces

Application: prestressed steel rupture
detection in concrete plates rotating head 

scanner

measurement results of a concrete bridge

© C. Boller, Fraunhofer IZFP
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prestressing tendons

rupture
s

……

Source: Klaus Szielasko and Albert Kloster, IZFP Saarbrücken
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Crack and flaw detection in pipelines

Inspection of pipelines using 
pigs

L
Defect contour Simplification

Crack and flaw 
detection by 
ultrasound pigs

Correlation of data from 
mearuemnts and geometry 
models of cracks for 
assessment

© C. Boller, Fraunhofer IZFP
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d
t

L• Up to 300 km of pipelines have to be inspected in one 
run

• Signals from up to 1000 sensors have to analysed for 
each segment

Source: W. Bähr IZFP & O.A. Barbian NDT Systems & 
Services

Barkhausen noise and Eddy current 
MIcroscope (BEMI)

3D Manipulator Control PC
Miniaturised inductive sensor
(modified video recorder head)

Stationary Electromagnet
(for Barkhausen Mode)

3D Manipulator Control PC (modified video recorder head)

© C. Boller, Fraunhofer IZFP
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Resolution: ~ 10 μm
• Manipulator control
• Eddy current hardware
• Barkhausen noise hardware

Records Barkhausen noise

Source: M. Rabung, U. Rabe, S. Hirsekorn, I. Altpeter, Fraunhofer 
IZFP
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HCM ~ HC HCµ ~ HC

Monitoring Technique

Flux Density B

Barkhausen 
Noise

CM C Cµ C

Higher Mode Analysis
Multi Frequency Eddy 

Current Impedance

Superimposed 
Permeability

Magnetisation Force H
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Source: K. Szielasko, R. Tschuncky, I. Altpeter, Fraunhofer 
IZFP

Quantitative NDT / Calibration

Data Base
(NDT Recorded Data + Reference Data)

Computation 

(Approximation Function, 
Similarities, …) 

Residual Austenite

(Approximation Function, 
Similarities, …)
Hardness

(Approximation Function, 
Similarities, …) 

Residual Stresses

p
(Regression Analysis, Pattern Recognition, …)

QNDT
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QNDT
Hardness

QNDT
Residual
Austenite

QNDT
Stress

Source: K. Szielasko, R. Tschuncky, I. Altpeter, Fraunhofer 
IZFP
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3MA Test System

Control Unit:
- Notebook
- Industrial PC
- Server

3MA-Frontend
- TCP/IP interface
- Network link
- ExtendableExtendable

Modular Hardware

- Components linked via a
TCP/IP interface

- Expandable through
additional components
(i.e. magnetostriction, US)

- Easily upgradable with
new components

© C. Boller, Fraunhofer IZFP
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3MA-Sensor
- Available in different sizes and shapes

new components

Source: K. Szielasko, R. Tschuncky, I. Altpeter, Fraunhofer 
IZFP

MikroMach Test System

Mikromagnetic 
Materials charakterisationMaterials charakterisation 
in its most compact form

Sensor = Test Equipment

Link control PC via 

© C. Boller, Fraunhofer IZFP
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Standardised USB link

Source: K. Szielasko, I. Altpeter, Fraunhofer 
IZFP
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Quantitative Determination of Residual Stresses
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B001 B002

Position [cm]

Source: B. Wolter, K. Szielasko, I. Altpeter, Fraunhofer IZFP

17 CrNiMo 6 
residual stress 
maeasurement in 400

600

800

Oberfläche

QNDT of Residual Stresses due to Machining

maeasurement in 
gear wheels 
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-600
-600 -400 -200 0 200 400 600 800

Eigenspannung [M Pa]  (X-ray)

Source: B. Wolter, K. Szielasko, I. Altpeter, Fraunhofer IZFP
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Results:

Calibaration Probes:

Residual Austenite Determination on Anchor Bolts using 3MA

44 Anchor bolts with a RA of 2,6%  
43 Anchor bolts with a RA of 2,6%
44 Anchor bolts with a RA of 4,6% 
43 Anchor bolts with a RA of 11,3%
15 Anchor bolts with a RA of 5,8% 

Validation Probes:

Charge 1 with a RA of 3,4%

© C. Boller, Fraunhofer IZFP
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Charge 1 with a RA of 3,4% 
Charge 2 with a RA of 4,8% 
Charge 3 with a RA of 4,9% 
Charge 4 with a RA of 4,5% 
25 anchor bolts each from different hardening charges

Source: K. Szielasko, R. Tschuncky, I. Altpeter, Fraunhofer 
IZFP
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0
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Rp0.2 bzw. REH [MPa] (zerst.)

R p
0.

Trolley with integrated 3MA System
for inspection of milled sheets during rolling

Unit for remote control of trolley 
with 3MA system 

Source: B. Wolter, K. Szielasko, I. Altpeter, Fraunhofer IZFP
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The Central Question

Without compromising safety, could we make 
our structures:
– Better available?
– Lighter weight?
– More cost efficient?
– More reliable?

by making sensors (and possibly also actuators) 
t b i t l t f th t t ?

© C. Boller, Fraunhofer IZFP
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to become an integral part of the structure?

What about …
• Looking at advanced cheap sensors, which are 

continuously becoming
– Smaller,

Li ht– Lighter,
– Cheaper?

• Making the sensors an integral part of the structural 
component?

• Combining the sensors through advanced 
microelectronics and possibly
– Wireless technology with

Advanced microprocessors and

© C. Boller, Fraunhofer IZFP
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– Advanced microprocessors and 
– Advanced signal processing?
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Structural Health Monitoring (SHM)

… is the integration of sensing and possibly also 
actuation devices to allow the loading and 
damaging conditions of a structure to be g g
recorded, analysed, localised and predicted in a 
way that non-destructive testing becomes an 
integral part of the structure. SHM is not an 
additional NDT application, nor QNDT, a fatigue 
analysis, vibration analysis, signal processing, 
material science or any other single 
technological area but rather lateral integration

© C. Boller, Fraunhofer IZFP
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technological area but rather lateral integration 
of all those in terms of a structure’s life cycle 
management.

What We Need to Know

• Structural Behaviour and Performance
• Loads
• Design Principles
• Maintenance
• Systems for Structural Assessment
• Emerging Technologies

© C. Boller, Fraunhofer IZFP
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e g g ec o og es
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Enhancing Damage Tolerance through SHM

Stress

Gain in weight

Stress

Gain in weight
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Life

with
monitoring

without
monitoring

Gain in life

Life

with
monitoring

without
monitoring

Gain in life

Source: H.-J. Schmidt, Airbus

Technologies Beyond State-of-the-Art in Aircraft NDT
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Comparative
Vacuum
Monitoring:
• Crack

Electro 
Magnetic
Layer
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What is a Sensor? 

Amplifier Data
A i iti

Switch 
Box

p Acquisition

Processor

Amplifier Waveform
Generator

Smart Suitcase™
Smart Layer®

with 12 transducers

© C. Boller, Fraunhofer IZFP
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Smart Suitcasewith 12 transducers

Smart Sensing System with 1 input and output

Stress measurements of a suspension bridge

• Six strands on center-east and anchorage chamber 
measured

Fibre optic sensors for loads monitoring
Cable opened for tests

• SOFO Dynamic fiber optic sensing system used
• Two 12-wheels trucks, ~30 tons each
• Quasi-static test: 7 km/h; dynamic test: 72 km/h

Anchor block 
tested

© C. Boller, Fraunhofer IZFP
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Source: Smartec SA, Lugano Switzerland
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Remote dynamic loads monitoring

SSI implemented in Labview VI operates in real-time and confirms 
operation of TMD during strong winds via eight-times increase in 
damping
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Source: James Brownjohn, The University of Sheffield0 0.5 1 1.5 2 2.5 3 3.5 4
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Structural health monitoring using wireless sensor 
networks

sensors
- robust - low  power consumption
- high bandwidth - cheap

wireless 
data transmission
( i l  

self configuring 
netzwork

embedded networking
automatic data 

MEMS / MotesMEMS / Motes

Insitu-Processing

wireless RF 
data 

transmission 
Daten

transmitter and 
receiver 
(internet)
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Source: Christian Grosse MPA University of Stuttgart

(wireless 
communication)

netzwork extraction
self calibrating

transmission of  a few but 
meaningful data 

extrahierten Daten 

transmitter
mobile data collector

server

Analysis / AlarmAnalysis / Alarm



21

Acoustic emission 
sensors

Specimen Sensor Attachment 

sensors
Phased array
transducers

Smart Layer 
transducers

© C. Boller, Fraunhofer IZFP
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Acoustic emission 
sensors

3

4
 

 1to22 (Path 1)
 3to23 (Path 2)
 2to24 (Path 3)
 4to25 (Path 4)
 5to26 (Path 5)
 6to27 (Path 6)
 7to28 (Path 7)
 10to17 (Path 8)

Damage Index of the 1st wave packet in parallel wave path

Normalized Damage Index = 
Measured Damage Index / 1st Damage Index 
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Argumentation of Threshold Setting 

Damage Index against the estimation of the crack length from the parallel paths at 183kcycle
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Damage Index against Crack length
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0.0

0.5

1.0

0 2 4 6 8 10 12 14 16
crack length [in mm]

Constraints:

Transducer 
Locations

Crack 
Location

Crack Initiation at Countersunk Rivet Holes 

Constraints:
• Transducers only to be 

placed inside the fuselage
• Acoustic signals passing a 

lap can reduce up to a 
factor of 4

• Area around riveted lap 
allows for a multitude of 

© C. Boller, Fraunhofer IZFP

44

acoustic wave reflections

Outer
Fuselage

Inner
Fuselage
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Wave Modulation at Tapered Surfaces 

Crack

Crack

Cra ck Initia tion
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Effect of Holes on Scattered Wave Distribution 
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Without Crack With Crack
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Crack length 2.5 x rivet diameter needs to be monitored no 
further away than 12.5 x rivet diameter

Crack 10.9

1

0.9

1

Multiple Path Monitoring for Confidence Enhancement 
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2 3 4 50
Path Number

A 12 3 4 50
Path Number

A

high frequency

• Acoustic Emission (passive)

A t Ult i ( ti )

Monitoring of Windmill Rotor Blades

• Acousto Ultrasonic (active)

Sensor/actor elements

• piezo fibre patches (HF) as sensors 

(and low range actors)

36 HF piezo fibre transducer
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( g )

• pzt stacks for lamb wave generation 

(large range actuators) 

6 HF pzt stacksSource: B. Frankenstein et al., Fraunhofer IZFP
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• structure independent 
application for SHM

SHM Systems

• online reconfiguration

• online and offline analysis, 
documentation of 
structural damage

• realization of structure 
dependent data base

• development and test of 
online SHM algorithms
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Source: B. Frankenstein et al., Fraunhofer IZFP

SHM in Publication
• Internat., European and Asia-Pacific 

Workshop on SHM
• Encyclopedia of SHM; John Wiley & 

Sons, 5. Vols., ca. 3,000 pages, 
01/2009

• Structural Health Monitoring – An 
International Journal; SAGE Publ.

• Int. Journal on Structural Control and 
Monitoring; John Wiley & Sons

• Smart Materials and Structures; Inst. 
of Physics Publ.

• Intelligent Material Systems and 
Structures; SAGE Publ.

• Staszewski W.J., C. Boller and G.R. 
Tomlinson (Ed.s), 2003: Health 
Monitoring of Aircraft Structures; J

• Introduction and Definitions 
• Physical Monitoring Principles 
• Signal Processing 
• Simulation
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Monitoring of Aircraft Structures; J. 
Wiley & Sons

• Balageas D., C.-P. Fritzen and A. 
Güemes, 2005: Structural Health 
Monitoring; ISTE Ltd.

• …

• Simulation 
• Sensors
• Systems and System Design
• Principles of SHM-Based Structural 

Monitoring, Design and Maintenance
• Aerospace Applications
• Civil Engineering Applications 
• Other Applications
• Standardization and Specification
• Glossary
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• Ageing structures must have a damage tolerance if they should be 
managed

• Structural design principles and geometry must be understood
• Operational loads need to be known

Di it l d l f th t t i h l f l f d l ti

Conclusions 

• Digital model of the structure is helpful for damage accumulation 
evaluation

• NDT methods available for in situ structural and materials 
characterisation

• Different sensing system principles to be ready for structural 
integration

• NDT phenomena around the areas to be monitored have to be known
• SHM technologies considered provide sufficient maturity and 

reliability
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reliability
• A lot of technology around for SHM based ageing infrastructure 

management


