Design of Structural Concrete: Impact of Limit Analysis

VII EPUSP Symposium and 51th Brazilian Concrete Congress Curitiba, 8 October 2009

> Peter Marti ETH, Zurich, Switzerland

> > Design of Structural Concrete: Impact of Limit Analysis, Peter Marti , Curitiba, 08.10.2009, 1/55

Outline

- 1 Historical Background
- 2 Modelling of Structural Concrete
- 3 Behaviour of Structural Concrete
- 4 Limit Analysis and Design
- **5 Tension Chord Model**
- **6 Cracked Membrane Model**
- 7 Sandwich Model
- 8 Structural Design and Code Development
- 9 Conclusions

Design of Structural Concrete: Impact of Limit Analysis, Peter Marti , Curitiba, 08.10.2009, 2/55

2 Modelling of Structural Concrete

Scientific Models - One

- Aim at representing reality
- Means of describing certain ranges of experience / developing associated terminologies
- Basis of predicting future behaviour
- Essential aspects emphasised / secondary aspects neglected

Design of Structural Concrete: Impact of Limit Analysis, Peter Marti, Curitiba, 08.10.2009, 16/5

Scientific Models - Two

- Realistic → consistent interpretation of past behaviour
 → accurate prediction of future behaviour
- Powerful \rightarrow large range of experience
- → Consistency / accuracy / generality

Design of Structural Concrete: Impact of Limit Analysis, Peter Marti , Curitiba, 08.10.2009, 17/5

Scientific Models - Three

- Subject to permanent evolution
- Improve consistency, accuracy and generality
- Continuous verification in the light of new (experimental) evidence
- → If necessary, models have to be adapted and terms have to be newly defined

Design of Structural Concrete: Impact of Limit Analysis, Peter Marti , Curitiba, 08.10.2009, 18/55

Structural Engineering

- Designing, realising and managing (complex) structures based on scientific knowledge and practical experience
- Design of new / examination of existing structures
- Modelling is an important structural engineering activity

Design of Structural Concrete: Impact of Limit Analysis, Peter Marti, Curitiba, 08.10.2009, 19/3

Models for Structural Concrete

- Scientific models → consistency, accuracy, generality
- Engineering models → simplicity, transparency
- Conceptual design \rightarrow combined use of simplified models
- Detailed design \rightarrow more advanced and comprehensive models
- Classical models / recent extensions
- Consistent framework for the treatment of the entire load-deformation response
- Coherent approach to conceptual design, structural analysis, dimensioning and detailing

Design of Structural Concrete: Impact of Limit Analysis, Peter Marti , Curitiba, 08.10.2009, 20/55

8 Structural Design and Code Development

Code Development

- · Recognised principles of construction
- Codes should be simple, clear, understandable and practical
- · Codes must be reliable
- A code is a necessary evil, not an end in itself
- Basis of fair competition
 - consistent terminology
 - restricted to a minimum of rules
 - liberal towards innovation, no hindrance to creativity

Design of Structural Concrete: Impact of Limit Analysis, Peter Marti, Curitiba, 08.10.2009, 50/5

Structural Quality

- Mainly dependent on
 - conceptual design
 - detailing
 - execution
- Importance of structural analysis and numerical verifications often overestimated

Design of Structural Concrete: Impact of Limit Analysis, Peter Marti , Curitiba, 08.10.2009, 51/5

Conceptual Design

- Essential qualities: economy / integration / configuration
- Economy mainly influenced by chosen structural system / envisaged methods of construction
- Basic design requires a synthesis:
 - follow force flow
 - account for execution
 - avoid ballast by reducing / prestressing members
 - → Efficient raw design / more or less uniform stresses
- Refined design to improve integration / configuration

Design of Structural Concrete: Impact of Limit Analysis, Peter Marti, Curitiba, 08.10.2009, 52/5

Representative Stress Design

- · Partial factors unsuitable for conceptual design
- Representative stresses (service load level)

• **N.B.:** $\begin{aligned} f_{sd} &= f_{sk}/\gamma_s \quad ; \quad \sigma_{s,rep} = f_{sd}/\gamma_F \\ f_{cd} &\approx 6.9 \cdot f_{ctm} \; ; \quad \sigma_{c,rep} = f_{cd}/\gamma_F \\ \gamma_F &\approx \frac{2}{3}\gamma_G + \frac{1}{3}\gamma_Q = 1.4 \end{aligned}$

Design of Structural Concrete: Impact of Limit Analysis, Peter Marti , Curitiba, 08.10.2009, 53/5

8 Conclusions

- Limit analysis
 - simple, rational and general framework for ULS design of structural concrete
- Supplementary deformation considerations
 - tension chord model
 - cracked membrane model
 - sandwich model
- Representative stress design method
 - suitable for conceptual design
 - similar to allowable stress design
 - integration of achievements of limit analysis

esign of Structural Concrete: Impact of Limit Analysis, Peter Marti , Curitiba, 08.10.2009, 54/55

