Anais do 51° Congresso Brasileiro do Concreto
CBC2009
Qutubro [/ 2009

ISBN IBRACON

@ 2009 - IBRACON

APPLICATION OF NONLINEAR FRACTURE
MECHANICS TO THE ASSESSMENT OF
ROTATIONAL CAPACITY IN REINFORCED
CONCRETE BEAMS

Alberto Carpinteri, Mauro Corrado
Politecnico di Torino, Italy

ir
Sd T
2,

&(:ﬂ’}? Politecnico di Torino

o Department of Structural Engineering and Geotechnics

Introduction

Snap-back instability in structural engineering
Cohesive Crack Model

Overlapping Crack Model

Numerical algorithm for RC beams in bending
Size-scale effects on the rotational capacity

Size-scale effects on the minimum flexural reinforcement




Ductility in structural design

The development of ductility is a key parameter
for the design of RC beams in bending

The rotational capacity is required in order to:
provide structural robustness;
give warning of incipient collapse by the development
of large deformation prior to collapse;
allow the bending moment redistribution in statically
indeterminate structures;
enable major distortions and energy dissipation during
earthquakes;
withstand impact and cyclic load.

Different nonlinear contributions are involved in the
flexural mechanical behaviour of RC elements
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Traditional models, based on stress—strain constitutive laws for
concrete and steel, do not capture the final softening branch, and
define the ultimate condition by imposing limits to the materials
deformations instead of by means of the drop of the resistant
moment.




Evolution in the design formulae

INELASTIC ROTATIONS VERSUIS
RELATIVE DEPTH OF NEUTRAL
AXIS AT FAILURE

1. The rotational capacity of RC beams
in bending has been investigated
from the experimental point of view in
the early 1960s (CEB Indeterminate
Structures Commission).

The following empirical hyperbolic
relationship between plastic rotation
and relative neutral axis depth was
proposed:
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Siviero E. (1974) Rotation capacity of monodimensional members in structural concrete. CEB Bull.
Information, 105:206-222.

2. Analytical and experimental research coordinated by prof.
Eligehausen

Two different collapse mechanisms (steel yielding and concrete crushing)
and different steel ductility classes have been considered.
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Eligehausen R., Langer P. (1987) Rotation capacity of plastic hinges and allowable moment
redistribution. CEB Bull. Information, 175:17.9-17.29.




Eurocode 2
(EN 1992-1-1, 2004)

» When the plastic analysis is adopted in structural design, it has to verify that
the admissible rotation in the plastic hinge is greater than the required
rotation.

0.6h 0.6h

Co0M105

~ ~
| Ml /\ 1
~ T~
~ ~

9o [mrad]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
x/d

Experimental results

» The ultimate rotation is a decreasing function of the structural size.

Results for different steel ductility classes
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(Bosco and Debernardi 1993) (Bigaj and Walraven 1993)

Corley G.W. (1966). Rotational capacity of reinforced concrete beams. J. Struct. Division, ASCE,
92:121-146.

Mattock A.H. (1967). Rotational capacity of hinging regions in reinforced concrete beams. Proc.

Conf. on Flexural Mechanics of Reinf. Concrete, SP-12, ACI/ASCE, 143-181.

Bosco C., Debernardi P.G. (1993). Influence of some basic parameters on the plastic rotation of
reinforced concrete elements. CEB Bull. Information, 218:25-44.

Bigaj A.J., Walraven J.C. (1993). Size effect on rotational capacity of plastic hinges in reinforced
concrete beams. CEB Bull. Information, 218:7-23.




Modelling the crack tip process zone in
quasi-brittle and ductile materials

(a) CRACK TIP PROCESS ZONE
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Development of Cohesive Zone Models

Dugdale (1960) crack-tip plastic zone (metals)
Barenblatt (1962) cohesive atomic forces (crystals)

Bilby, Cottrell crack-tip plastic zone (metals)
& Swinden (1963)

Rice (1968) crack-tip plastic zone (metals)

Smith (1974) analysis of different cohesive laws (metals
and concrete)

Dugdale D.S. (1960) Yielding of steel sheets containing slits, J. Mech. Phys. Solids 8:100-
114.

Barenblatt G.I. (1962) The mathematical theory of equilibrium cracks in brittle fracture, Adv.
App. Mech. 7:55-129.

Bilby B.A., Cottrell A.H., Swinden, K.H. (1963) The spread of plastic yield from a notch,
Proc. R. Soc. London A272:304-314.

Rice J.R. (1968) A path independent integral and the approximate analysis of strain
concentration by notches and cracks, J. Appl. Mech. 31:379-386.

Smith E. (1974) The structure in the vicinity of a crack tip: a general theory based on the
cohesive zone model, Engng. Fract. Mech. 6:213-222.




Hillerborg et al. Fictitious Crack Model, for the analysis of
(1976) Concrete (computational)

Carpinteri Cohesive Crack Model, for the analysis of
(1984-1989) snap-back instabilities (quasi-brittle mat’s)

Hillerborg A., Modeer M., Petersson P.E. (1976) Analysis of crack formation and crack
growth in concrete by means of fracture mechanics and finite element. Cem. Concr.
Res. 6: 773-782.

Carpinteri A. (1985) Interpretation of the Griffith instability as a bifurcation of the global
equilibrium. In: S.P. Shah (Ed.), Application of Fracture Mechanics to Cementitious
Composites (Proc. of a NATO Adv. Res. Workshop, Evanston, USA, 1984), 284-316.
Martinus Nijhoff Publishers, Dordrecht.

Carpinteri A. (1989) Cusp catastrophe interpretation of fracture instability, J. Mech.
Phys. Solids 37:567-582.

Carpinteri A. (1989) Decrease of apparent tensile and bending strength with specimen
size: two different explanations based on fracture mechanics, Int. J. Solids Struct.
25:407-429.

Carpinteri A. (1989) Post-peak and post-bifurcation analysis on cohesive crack
propagation. Engng. Fract. Mech. 32:265-278.

The problem of snap-back instability

Strain softening represents a violation of the Drucker’s
Postulate. As a consequence, the following phenomena may
occur:

» Loss of stability in the controlled load condition
(snap-through);

* Loss of stability in the controlled displacement condition
(snap-back).

Maier G. (1966) Behaviour of elastic—plastic trusses with unstable bars, ASCE J. Engng.
Mech., 92:67-91.

Maier G., Zavelani A., Dotreppe J.C. (1973) Equilibrium branching due to flexural softening,
ASCE J. Engng. Mech., 89:897-901.

Carpinteri A. (1989) Softening and snap-back instability in cohesive solids, Int. J. Num.
Methods Engng., 28:1521-1537.




Snap-back instabilities of the elastic
equilibrium in thin shells

(=]

Nondimensional axial stress

End shortening

von Karman T., Tsien H.S. (1941) The buckling of thin cylindrical shells under axial
compression, J. Aero. Sci. 8:303-312.

= Complete Spherical Shell
Bifurcation Buckling Pressure

= Nonlinear Prebuckling * Spherical Cap Bifurcation
Pressure

Carlson R.L., Sendlebeck R.L., Hoff N.J. (1967) Experimental studies of the buckling of
complete spherical shells, Exp. Mech. 7:281-288.

Kaplan A. (1974) Buckling of Spherical Shells, In: Thin Shell Structures, Theory,
Experiment, and Design, Y.C. Fung and E.E. Sechler (eds.), Prentice-Hall, Inc., Englewood
Cliffs, N.J., 248-288.




e Casel:a=0

The load-deflection relation is linear: xis N (o] P<2/3 (c<a,)

» Case2:a=h
The following equilibrium scheme can be considered:

The load-deflection relation is hyperbolic (Sg=G:/o,h; A=I/h):

~ s A2 ’ ~
P [‘E ] for p<2/3  (x<h)

u

Both equations have the same upper limit: P<2/3.

Carpinteri A. (1989) Size effects on strength, toughness, and ductility, J. Eng. Mech.
115:1375-1392.

* By transforming the load bounds into deflection bounds:
}\‘3
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* When the two domains are disjoint, the P-3 curve is regular;

* When they are partially overlapped, it is well-founded to
suppose them connected by a curve with highly negative or
even positive slope (snap-back).

e Snap-back is thus expected when 8,8, — B = uJ




The Cohesive Crack Model

FRacture ANAlysis Code — ENEL-CRIS Milano and University of Bologna

top node

Yy =
>4

Fictitious crack

Carpinteri A. (1985) Interpretation of the Griffith instability as a bifurcation of the global
equilibrium. In: S.P. Shah (Ed.), Application of Fracture Mechanics to Cementitious
Composites (Proc. NATO Adv. Res. Workshop, Evanston, USA, 1984), 284-316. Martinus
Nijhoff Publishers, Dordrecht.

Catastrophical behaviour

o = 5 J.Q.Ffﬁct.on—cnntrol'led

Lmdma process

Carpinteri A. (1989) Cusp catastrophe interpretation of fracture instability, J. Mech.
Phys. Solids, 37:567-582.




OPENING OF NOC

With a CMOD-controlled loading process, it is possible to
follow the virtual softening branch BC.

-The energy W* s
released in the time period
immediately following the
achivement of the peak
load.

-t can be measured
dynamically through an
impulse transducer.

Bocca P., Carpinteri A. (1990) Snap-back fracture instability in rock specimens:
experimental detection through a negative impulse, Engng. Fract. Mech., 35:241-250.




Effect of the structural size-scale
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« In the nondimensional P — § plane, the mechanical behaviour is
governed by the energy brittleness number, sg=gG/oh

(Carpinteri, 1985).
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Size effects on tensile strength

e The ratio Pg,h./Pys can be plotted against the nondimensional
size, 1/sg.

e This ratio represents the ratio of the apparent tensile strength to
the true tensile strength (considered as a material constant).
It converges to unity for very small values of sg.

f : t Fls;
0 1 2 3 4 5
Dimensionless size, 16, /G,10%

* The true tensile strength, c,, can be obtained only with very large
specimens.

Comparison between Cohesive Crack Model and design codes

—— Cohesive Model
—s— Model Code 90
— - -EC2 (2003)

0.8
beam depth [m]

Ge=0.1kg/cm  ¢,=20 kg/cm?
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The crucial role of the brittleness number

high fracture energy G
low tensile strength o,
small size h

large initial crack depth ay/h
low slenderness I/h

low fracture energy G
high tensile strength o,
large size h

small initial crack depth ay/h
high slenderness I/h

Quasi-brittle
materials show the
phenomenon of
strain localization
Crushing failure _ - 8 also in compression
Shear failure Splitting failure ‘_Nh_er_] the elastic
limit is overcome

Hudson J.A., Brown E.T., Fairhurst C. (1972) Shape of the complete stress-strain curve for

rock. Proc. of the 13th Symposium on Rock Mechanics, Urbana, lllinois, 773-795.

van Mier J.G.M. (1984) Strain softening of concrete under multiaxial compression. PhD
Thesis, Eindhoven.

Hillerborg A. (1990) Fracture mechanics concepts applied to moment capacity and
rotational capacity of reinforced concrete beams. Engng. Fract. Mech., 35:233-240.

Jansen D.C., Shah S.P. (1997) Effect of length on compressive strain softening of concrete.
J. Eng. Mech., 123:25-35.
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Ferrara, Gobbi (1995)
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The slenderness- and scale-
dependent curves collapse
onto a narrow band!

Ferrara G., Gobbi M.E. (1995) Strain softening of concrete under compression. Report
to RILEM Committee 148 SCC, Enel-CRIS Laboratory, Milano, Italy.

Evaluation of the post-peak overlapping, w
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In analogy with the Cohesive Crack Model, the Overlapping Crack Model
can be defined by a couple of constitutive laws:

We define the crushing energy
(per unit surface), as the area
below the softening curve in the
o—w diagram:

G. =30+60 N/mm

we =1mm

Carpinteri A., Corrado M., Paggi M., Mancini G. (2007) Cohesive versus overlapping crack
model for a size effect analysis of RC elements in bending, In: Design, Assessment and
Retrofitting of RC Structures, Vol. 2 of FraMCoS-6, Taylor & Francis, 655-663.

Suzuki et al. (2006) Concentric loading test of RC columns with normal- and high-strength
materials and average stress-strain model for confined concrete considering compressive
fracture energy. Proc. 2nd fib Congress, Naples, Italy.

Application to uniaxial compression tests

R IS o o o

(@) (b) (c) (d)

Unloaded specimen No damage Strain localization ~ Complete
interpenetration

(b) o‘:%z, fore<e,

© s=Z1+w=21+ we 1-Z |, for wo < wh
E E

O.

(d) =0, for w® > w;,

Carpinteri A., Corrado M. (2009) An extended (fractal) Overlapping Crack Model to describe
crushing size-scale effects in compression. Eng. Failure Anal., 16:2530-2540.
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(a) Normal softening (b) Vertical drop (c) Catastrophic softening (snap-back)

Experimental assessment: normal strength concrete

0. = 47.9 MPa

wonomonwon

moo w >
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Numerical Experimental

Jansen D.C., Shah S.P. (1997) Effect of length on compression strain softening of concrete.
J. Eng. Mech., 123:25-35.

Carpinteri A., Corrado M., Mancini G., Paggi M. (2009) The overlapping crack model for
uniaxial and eccentric concrete compression tests. Mag. Concrete Res., 61, in print.
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Experimental assessment: high strength concrete

o, =90.1 MPa

Numerical Experimental

Structural Ductility oc B = S __Ge
e hoe M

Constitutive law for reinforcement

Bond-slip relationship (MC90)
The reinforcement reaction and half
the crack opening are given,
respectively, by the integration of the
bond stresses and the relative slips
along the transfer length.

Ruiz G., Elices M., Planas J. (1999) Size effects and bond-slip dependence of lightly reinforced

concrete beams. Minimum reinforcement in concrete members, A. Carpinteri, ed., Elsevier Science
Ltd., Oxford, U.K., 127-180.
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Numerical algorithm for RC beams in bending

Set consisting in N elastic
equations:

Influence coefficients matrix related to the nodal displacements (w; = 1)
Opening/overlapping nodal displacements vector
Influence coefficients vector for the bending moment

Applied bending moment

2n+1 unknowns: {F}, {w} and M

Additional (n+1) equations:

for i=12,..,G-1), i#r

=7
w. . . q
, J for i=j,..,(m-1) n equations
' for i=m,...,p
for i=(p+1),...,n




. nodo »
Governing parameter of the process

!

Position of the fictitious crack tip or
the fictitious overlapping zone tip

Computation of the rotation

At each step: 9= {D“,}T {w} + D, M

{Dw} vector of the coefficients of influence (nodal displacements)
vector of the nodal displacements (opening or overlapping)
vector of the coefficients of influence (applied moment)

applied moment

Experimental assessment of the proposed model

Bosco and Debernardi (1993) GEOMETRY
h =200, 400, 600 mm
L/h=10
0 =0.13% — 1.71%
0. = 0.12% — 0.50%

CONCRETE
o, = 3 MPa
o, = 30 MPa
G, =0.065 N/mm
G =30 N/mm

Bosco C., Debernardi P.G. (1993) Influence of some basic parameters on the plastic
rotation of reinforced concrete elements. CEB Bull. Information, 218:25-44.
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Bending moment-rotation diagrams as functions of the
beam size and of the reinforcement percentage

— numerical
— experimental

TN p=171%

i Ip= 1.13%

p=057%

004 006 008 0.10
9 [rad]

Carpinteri A., Corrado M., Mancini G., Paggi M. (2009) A numerical approach to
modelling size effects on the flexural ductility of RC beams. Mater. Struct., in print.

— numerical
experimental

p =0.28%
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— numerical
— experimental
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— numerical

experimental
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Numerical vs. experimental

results, p, = 1.13%
(Bosco and Debernardi 1993)
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Effect of steel in compression
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Effect of concrete compressive strength
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Effect of stirrups confinement
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Comparison with the prescriptions of Eurocode 2

Eurocode 2: high ductility steel;
concrete compressive strength < C50/60.

9er [mrad]

Carpinteri A., Corrado M., Mancini G., Paggi M. (2009) Size-scale effects on plastic
rotational capacity of RC beams. ACI Struct. J., 106 (6).

Size-scale effects on the minimum
flexural reinforcement
Numerical vs. experimental results

Bosco C., Carpinteri A., Debernardi P.G. (1990) Minimum reinforcement in high-strength
concrete. J. Struct. Eng., 116:427-437.
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The global response is
governed by two
nondimensional numbers:
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Carpinteri A., Cadamuro E., Corrado M. Dimensional analysis approach to the
assessment of the minimum flexural reinforcement in RC beams. To appear.
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Comparison between different models

=———Proposed formula
—»— Bosco et al.
—e— Baluch et al

—e— Fantilli et al.

——— Ruiz et al.

—— Appa Rao el al.
—+— Ghali et al.

—e— Gerstle et al.

Comparison with Design Code formulae

Proposed Formula
Eurocode

Model Code

ACI, Canadian Stand.

Norwegian Standards
British Standards

Indian Standards

Australian Standards
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Conditions for structural design
with ductile response

Crushing prevails

over steel yielding

Ductile
7 behaviour
Unstable crack

propagation

ROTATION
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