BRAZILIAN INTERNATIONAL ROLLER COMPACTED CONCRETE (RCC) SYMPOSIUM, SALVADOR, BRAZIL 7 SEPT 2008

RCC – NEW DEVELOPMENTS AND INNOVATIONS

Brian Forbes

Manager, Major Dams Projects GHD Pty Ltd Australia

RCC ACHIEVEMENTS TO 2008:

- 25 years since Willow Creek
- 350 RCC dams worldwide
- 190m high filled and operational
- 272m high Basha dam construction 2009+

RCC INNOVATIONS:

- Innumerable
- Most important ? In my opinion:
 1 Lift Joint Bond Sloped Layer Method
 2 Facing Concrete Grout Enriched RCC

1- LIFT JOINT BOND

- A concern and criticism of RCC dams
- Every 300mm, 10 x the number of CVC lifts
- Up to 1.5 MPa tension required across joints
- Cold, Warm, Hot joints and Maturity Index

TREATMENT OF LIFT JOINTS

- Surface clean up and 'green cutting'
- Application of a bedding concrete or mortar
- Coring shows only about 50% bonded
- Realisation in recent times:
 Reduced capacity to bond after Initial Set

Are these the lift joints we want?

I don't think so – not for a RCC high dam !

PLACING LIFTS WITHIN INITIAL SET TIME

- Initial set time 2 hours can retard to 24hrs
- Divide dam into blocks to reduce lift volume
- Retard and use high placing rates 1 to 2 lifts/day
- Adopt sloped layer method
- Treat cold lift joints as for CVC

3.0m lift Block Method at Jiangya dam in 1997

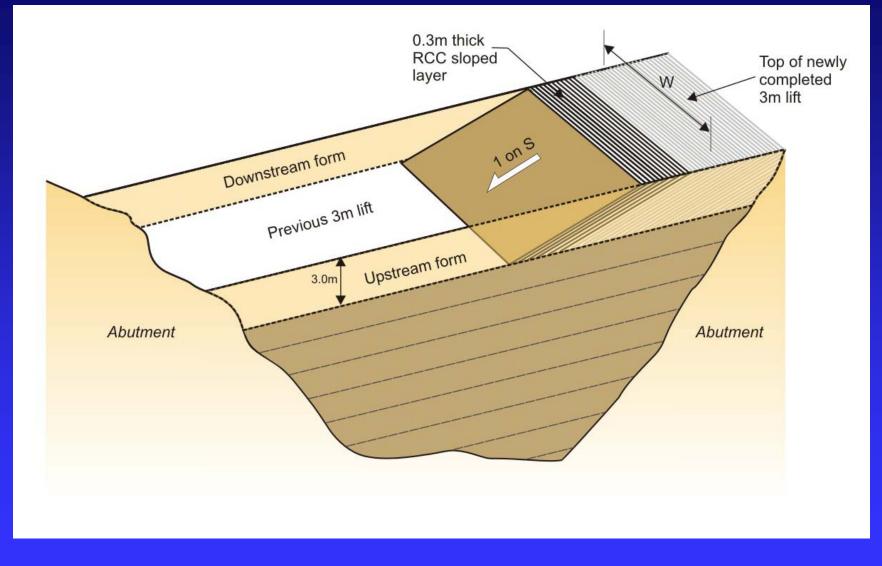
1.2m lift Block Method at Koudiat dam in 2007

CLIENTS PEOPLE PERFORMANCE

1.2m lift Block Method at Wadi Dayqah dam 2008

0.3m lift High Placing Rate Method at Yeywa dam 2008

3.0m lift Sloped Layer Method at Jiangya dam in 1997


CLIENTS PEOPLE PERFORMANCE

THE SLOPED LAYER METHOD

- SLM does not require the RCC to be retarded
- Up to 10 layers of RCC 300mm thick
- Each layer placed in < 2hours
- No surface treatment or bedding applied
- Allows time to prepare the cold lift surface

Explanation of the Sloped Layer Method

GHD CLIENTS PEOPLE PERFORMANCE

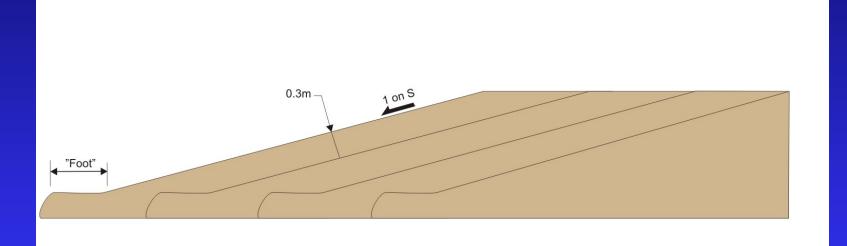
Selecting the Slope to Match the Placing Rate

- Generally 1 on 10 to 1 on 40
- Dependant on placing rate and initial set time
- Dependant on width of dam, steeper at base

An Example to Select the Slope

Assume:

Width between u/s and d/s faces Initial set time of RCC RCC placing rate Total lift height (10 layers) RCC layer thickness = 'W' = 2 hours = 500m³/hr = 3m = 0.3m


Then:

Slope 'S' = <u>2x500</u> ie. ~ <u>1000</u> if W=100m, S=10 Wx0.3x3 W

Dealing with 'feathered edges' using a 'foot'

Starting a sloping layer at Jiangya dam with a 'foot'

LIENTS PEOPLE PERFORMANCE

Placing 1.2m high lift at Tannur dam without a 'foot'

Tannur dam - SLM near the crest, 9m wide, 1:40 slope


Kinta dam - cold lift preparation ahead of next layer


Kinta dam – two 3m sloped layer lifts

Kinta dam – precast blocks to form 0.6m steps

Koudiat dam – crawler placer for SLM in 1.2m lifts

Advantages of the Sloped Layer Method

- Achieves monolithic RCC across 300mm lift joints
- Suits a range of placing rates without retarder
- Reduces lift joints by up to 90%, placing rates increased by up to 50%
- Lift joint preparation, form setting off 'critical path'
- Reduces RCC heat gain and rain/freeze damage

CLIENTS PEOPLE PERFORMANCE

Response from site

Brian, 25/09/2005

Ozaltin started SLM last Wednesday. It went so well they ran out of cement ! Brilliant concept, why isn't it compulsory?

Regards Clive Miller

Chief Resident Engineer Montgomery Watson Harza Al Wehdah Dam Project



2 - FACING CONCRETE – GERCC

- Many facings tried CVC, precast panels, PVC etc
- Objective durable, impermeable, aesthetic, cost etc
- CVC to RCC connection suspect, RCC uncompacted
- RCC, CVC differ only in amount of cement and water
- GERCC-adds extra cement and water to spread RCC

GERCC Process

- Generally uses a cement water grout w/c=1, add superplasticiser if w/c > 1 to reduce viscosity
- Apply 20mm bedding mortar to set lift surfaces
- Spread RCC lift, hand trim, do not compact
- Pour grout over the loose RCC surface
- Poker vibrate after grout has soaked into RCC

Procedure - Kinta Dam

Procedure - Kinta Dam

CLIENTS PEOPLE PERFORMANCE

Typical results - Kinta dam

GHD CLIENTS PEOPLE PERFORMANCE

Observations

- Meets all facing objectives, low cost, <US\$15/m²
- Modifies RCC in place to achieve CVC
- No special mixing or transport plant, simple process
- Excellent finish, monolithic with RCC body
- Low slump, no tendency for drying cracking

Elastic modulus and strength as for parent RCC

Uses for GERCC

- Can generally replace CVC on RCC dams
- Upstream and downstream facing
- Stepped spillway facing
- Rock abutment 'contact' or 'interface' concrete
- Encasement of waterstops, pipework, built-in items
- Reinforcing steel encasement

LIENTS PEOPLE PERFORMANCE

GERCC experience – Jiangya Dam 1997, 131m high

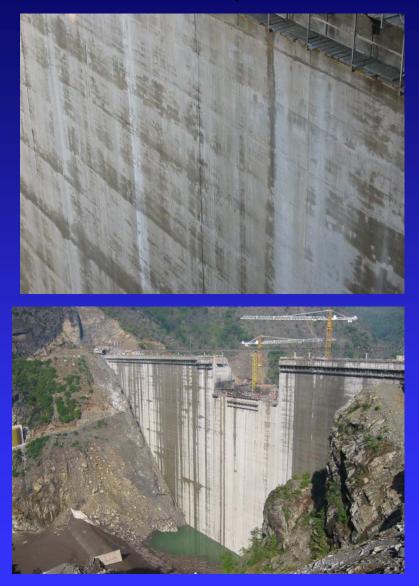
CLIENTS PEOPLE PERFORMANCI

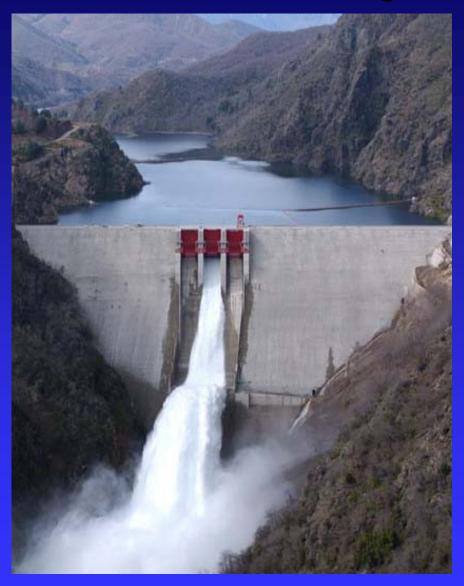
GE-RCC experience – Cadia Dam 1997, 40m high

GERCC experience – Tannur dam 2000, 60m high

LIENTS PEOPLE PERFORMANCE

GERCC experience - Miel Dam 2001, 190m high





GERCC experience - Ralco Dam 2003, 155m high

RCC Symposium

GERCC experience - Al Wehdah dam 2006, 103m high

GERCC experience - Wadi Dayqah dam 2008, 80m high

Other uses for GERCC

Quality Assurance and Control

- Full, uniform, poker vibration for good surface finish
- Strength will be slightly lower than the RCC (5%)
- Coeff. of Uniformity similar to the RCC (0.1 0.25)
- Slump taken after vibration, best 15 30mm (max)
- Grout quantity depends on RCC VeBe (<12s=nil)

Quality Assurance Testing

- Grout stability sample bleed
- Grout quantity control area and application (approx)
- Slump cone after vibration+ strength test sample
- Extract cores horizontal + vertical observe
- Test cores density, compressive strength etc

Aspects of GERCC for Future Research

- Significantly increase strength above that of the RCC for stepped spillway durability – maybe by adding silica fume or polymers to the grout.
- Determine the best way to incorporate a freezethaw admixture effectively into the GERCC via the grout.

CONCLUSIONS

- Placing RCC lifts within the initial set time of the RCC in the lower lift ensures full bond and joint tensile strengths equivalent to the RCC itself.
- The Sloped Layer Method is simple and efficient in achieving this – the very high RCC dams planned can now be developed with the necessary confidence.
- The addition of grout to any loose in-place RCC will allow transform it into CVC so it can be used where previously CVC would have been anticipated.

CONCLUSIONS (continued)

- GERCC uniformity, off form finish, strength and its excellent connection to the adjoining RCC are well proven; over 60 dams have used it to date. The process is simple and low cost. Some aspects for future development remain.
- SLM and GERCC are but 2 of many innovations in the developing technology of RCC – there will be more in the future, hopefully some as beneficial to the RCC process as these described to you.

"Thank you for your attention" "Ocigado"

GHD GLIENTS | PEOPLE | PERFORMANCE Kinta Dam 90m high - Used SLM and GERCC

