

Como pode o setor de cimento
e concreto contribuir para o
movimento global de
Sustentabilidade na
construção civil?

Juramento do Engenheiro

" Prometo sob juramento observar os postulados da ética profissional, concorrer para o desenvolvimento da técnica, da ciência e da arte e bem servir aos interesses da sociedade e da nação".

"este é o juramento dos engenheiros utilizado na colação de grau da POLI."

Concreto e Sustentabilidade

- 1. Sustentabilidade na construção civil
- 2. Concreto

Materiais constitutivos

Concreto com agregados reciclados

Concreto auto-adensável - SCC

Concreto de elevada vida útil

Concreto de alta resistência - HSC

Construção Civil

tempo – custo – qualidade (trinômio clássico)

- → PRODUÇÃO → pós-guerra
- → CAMINHO CRÍTICO → anos 60
- → DESEMPENHO → anos 70, ISO 6241
- → QUALIDADE → anos 80, ISO 9000
- → Gestão AMBIENTAL → anos 90, ISO 14000
- → VIDA ÚTIL → anos 00, ISO 15686
- → Produtividade, Re-engenharia, Lean Construction (Toyota Production System), Life Cycle Cost, Life Cycle Analysis, Life Cycle Assessment, Inovação Tecnológica
- → SUSTENTABILIDADE → 2005

Por que tantas "palavras de ordem"?

- √ criar novos desafios;
- √ impulsionar o conhecimento;
- √ alcançar o desenvolvimento;
- √ superar a inércia da acomodação.
- → Maior aproveitamento dos países desenvolvidos.
- → Na Construção Civil e em especial o CONCRETO pode e tem acompanhado o movimento internacional

Revolução Industrial 1750 ...

- → carvão 1750-1850; → petróleo; → nuclear, hidroelétrica, → gás, renovável
- → gerou inúmeros benefícios porém hoje há *quase* consenso sobre a necessidade de redução:
 - do aquecimento global e
 - do consumo de fontes de energia não renováveis

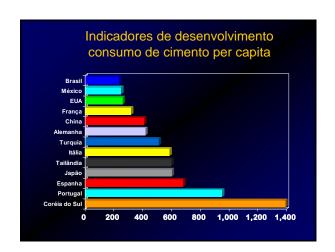
Cronologia da Sustentabilidade:

- 1972 → Clube de Roma livro → "Limites do Crescimento"
- 1972 → "ONU Declaration on the Human Environment" 26 princípios
- 1980 → "IUCN World Conservation Strategy" introduziu o termo sustentabilidade
- 1987 → "ONU Brundtland Commission" definiu o termo *sustentabilidade*

1992 → ECO 92 no Rio de Janeiro → "Agenda 21" com 40 cap. 4 partes e 900 p.

- 1. Sociais e Econômicos
- 2. Conservação e Gestão dos Recursos
- 3. Fortalecer Grupos Majoritários
- 4. Meios de Implementação

1997 → Protocolo de Kyoto: em 2020 emitir 6% menos gases estufa que em 1990 → países desenvolvidos


Sustentabilidade

"...é o desenvolvimento que atende as necessidades do presente sem comprometer as do futuro..."

Ambiental – Social - Econômica

Qual a relação entre desenvolvimento e produção de concreto, o mais consumido material industrial?

→ propulação mundial crescente
→ precisa de muitos empregos → precisa
de muita infra-estrutura → precisa da
construção civil → precisa das estruturas
de concreto

Paradoxo! Como o consumo de cimento e de concreto que são utilizados como índices de desenvolvimento de uma nação, podem, ao mesmo tempo serem utilizados como índice de degradação do meio ambiente? Uma das respostas está em pensar na estrutura, na obra, no produto final, e não nos materiais isoladamente

Como caminhar em direção à SUSTENTABILIDADE nas estruturas de concreto?

Alternativas ou caminhos

- 1. atuar sobre os materiais
- 2. empregar agregados reciclados
- 3. empregar concreto auto-adensável
- 4. empregar concreto de elevada vida útil
- 5. empregar concreto de alta resistência

Como alcançar SUSTENTABILIDADE nas estruturas de concreto?

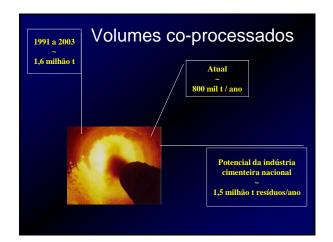
- 1. Atuando sobre os materiais constitutivos:
 - cimento
 - agregado miúdo
 - agregado graúdo
 - água;
 - aditivos;
 - armadura / aço;
 - fôrma

Cimento sem Pó

- Nova tecnologia de cimento com aditivos que promove a eliminação do pó
- Contribui para eliminação do desperdício de material e, principalmente, impede a inalação do cimento (saúde)

REDUZINDO Consumo de Energia

CO-PROCESSAMENTO



Exemplos comparativos

- EUA:
 - 1,2 milhões t / ano resíduos co-processados
 - 19% do consumo de energia térmica
- União Européia:
 - 3 milhões t / ano
 - 250 fábricas entre os 15 países-membros
 - 10% do consumo de energia térmica

REDUZINDO Consumo de Energia

INCORPORAÇÃO DE REJEITOS INDUSTRIAIS

atuando no processo Adições

- ESCÓRIAS
 - subproduto da fabricação do ferro gusa (siderurgia) → CP III (29% do CPI)
- CINZAS VOLANTES (pozolanas)
 - subproduto de usinas termo-elétricas → CP
 IV (49% do CP I)
- FÍLER CALCÁRIO → CP II
- pó das pedreiras (82% do CP I)

justificativas para o uso das adições

• TÉCNICAS: melhoria de propriedades

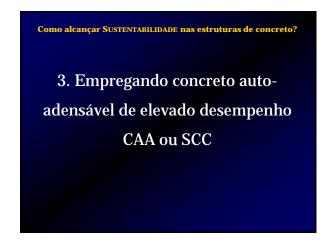
específicas

• ECONÔMICAS: redução de custos,

diminuição do consumo energético

• ECOLÓGICAS: aproveitamento de resíduos

poluidores


• ESTRATÉGICAS: preservação das jazidas

Como alcançar SUSTENTABILIDADE nas estruturas de concreto?

2. Empregando concretos com agregados reciclados a partir de entulho gerado por construções novas ou demolições

20 x produtividade CC: moldagem e acabamento: 4,4min + 3,3min n° de operários empregado: 5 (cinco) caçamba (2), vibração (1) e acabamento (2) 0,870 homens-hora / m³ de concreto CAA: moldagem e acabamento: 1,2min n° de operários empregado: três (3) caçamba (1) e acabamento (2) 0,081 h.h/ m³ de concreto

CAA ou SCC

1. reduz ruído → saúde

2. reduz tempo → produtividade

3. aumenta uniformidade

4. reduz energia elétrica → não usa vibrador

5. reduz desgaste de fôrmas

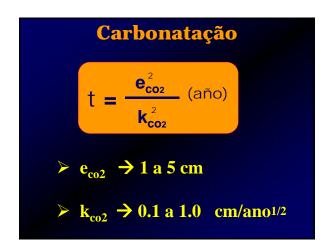
6. aumenta vida útil

Como alcançar SUSTENTABILIDADE nas estruturas de concreto?

4. Empregando concreto de elevada vida útil

VIDA ÚTIL

...período de tempo durante o qual a estrutura mantém certas características mínimas de segurança, estética, estabilidade e funcionalidade, sem necessidade de intervenção não prevista...


...se a estrutura de concreto deteriora implica em novos consumos de materiais, energia, geração de entulho...

...interessa aumentar vida útil de projeto...

interação entre a estrutura e o meio ambiente

principal mecanismo deletério é a corrosão do aço

como reduzir risco de corrosão precoce?

Sustanaible Development "Increasing service life of concrete structures we can preserve the natural resources. If we develop the design and construction ability we can get concrete structures with 500 years service life. Doing this we can multiply by ten our productivity which means preserve the 90% of them" Kumar Mehta Reducing the Environmental Impact of Concrete Concrete International. ACI, v.23, n. 10, Oct. 2001. p.61-66

Vida Útil

- 1. Funcional (arquitetura)
- 2. Econômica (economista)
- 3. Técnica (Engenharia)

Como alcançar SUSTENTABILIDADE nas estruturas de concreto?

5. Empregando concreto de alta resistência HSC

Projetar e Construir obras lindas, funcionais, resistentes e duráveis, levando em conta os princípios de sustentabilidade

CO₂?
Energia?
Recursos naturais?
Vida Útil?
(Life Cycle Analysis)

considerando um pilar central típico de um edifício de 20 andares secção quadrada, 3m de altura, armadura principal

fôrça normal característica = 500 tf				
f _{ck} (MPa)	taxa de armadura (%)	seção (cm)	adotado (cm)	
20	0.4 → 49kg	71.8 x 71.8	72 x 72	
50	0.4 → 24kg	46.9 x 46.9	50 x 50	
20	4.0 → 255kg	51.2 x 51.2	52 x 52	
50	4.0 → 151kg	39.5 x 39.5	40 x 40	

Pilar para 500t

 $\begin{aligned} \mathbf{f}_{ck} &= 20 MPa \\ \mathbf{f}_{ck} &= 50 \ MPa \\ \mathbf{ASTM} \ \mathbf{36} \end{aligned}$

$$f_{ck} = 20MPa$$

Cimento = 280 kg/m^3

Areia = 845 kg/m^3

Brita = 1036 kg/m^3

 $Água = 210 \text{ kg/m}^3$

$f_{ck} = 50MPa$

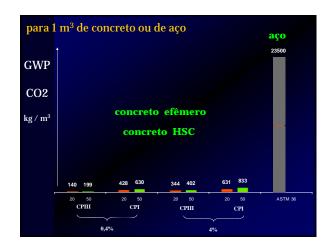
Cimento = 420 kg/m^3

Areia = 801 kg/m^3

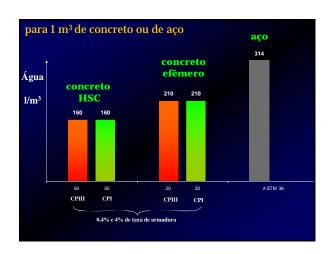
Brita = 1010 kg/m^3

 $Água = 160 \text{ kg/m}^3$

emissões gasosas e energia consumida

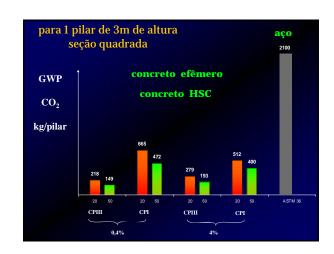

Material	NO _x	CO ₂	GWP	Energia consumida
	(kg/ton)	(kg/ton)	(kg/ton)	(kWh/ton)
Clinquer Portland	1,85	855	1447	998
Ferro Gusa	4,43	1588	3006	5060
Sucata		380	719	20000

*Global warming potential (GWP) is a measure of how much a given mass of greenhouse gas is estimated to contribute to global warming. It is a relative scale which compares the gas in question to the compare of the gas in question to the compare of the gas in the g


Concreto f_{ck} 20MPa para 1 m³ GWP energia kWh/m³ (kg/ton) Cimento CPI 1447 405 280 280kg 845kg Desprezível 0 Pedra 1036kg Desprezível 12 Água 210kg 0 0 23 640 315kg 226 6300 Formas 12 m²/m³ 6 reutilizações chapa de1,4cm 0,0280 m³ Desprezível 43 TOTAL 428 933 6636

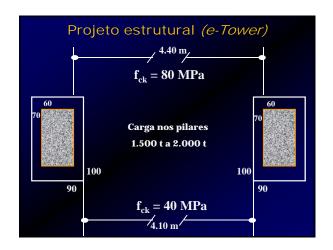
Concreto f _{ck} 50MPa				
	para1 m³	GWP (kg/ton)	GWP kg/m³	energia kWh/m³
Cimento CPI	420kg	1447	607	419
Areia	801kg	Desprezível	0	3
Pedra	1010kg	Desprezível	0	12
Água	160kg	Desprezível	0	0
Aço	32kg	719	23	640
	315kg		226	6300
Fôrmas 12 m²/m³ 6 reutilizações chapa de 1,4cm	0,0280 m³	Desprezível	0	43
TOTAL			630	1117
			833	6777

1 m³ de material					
material	tipo	f _{ck}	energia	GWP	
		MPa	kWh/m³	kg/m³	
concreto armado	CP I	20	933 / 6636	428 / 631	
concreto armado	CP III	20	777 / 6437	140 / 344	
concreto armado	CP I	50	1117 / 6777	630 / 833	
concreto armado	CP III	50	820 / 6480	199 / 402	
aço	ASTM 36		39700	23500	
	0,4% & 4% de taxa de armadura				



Pilar com 3m 0,4% armadura, 500tf					
material	tipo /f _{ck}	seção	energia	GWP	
	/ MPa	cm	kWh	kg	
concreto armado	CP I / 20	72 x 72	1451	665	
concreto armado	CP III / 20	72 x 72	1208	218	
concreto armado	CP I / 50	50 x 50	838	472	
concreto armado	CP III / 50	50 x 50	615	149	
aço	ASTM 36	300cm ²	3500	2100	

Pilar com 3m 4% armadura, 500tf					
material	tipo /f _{ck}	seção	energia	GWP	
	/ MPa	cm	kWh	kg	
concreto armado	CP I / 20	52 x 52	5383	512	
concreto armado	CP III / 20	52 x 52	5221	279	
concreto armado	CP I / 50	40 x 40	3253	400	
concreto armado	CP III / 50	40 x 40	3110	193	
aço	ASTM 36	300cm ²	3500	2100	



Economia de recursos naturais Original: $f_{ck} = 40 MPa$ $seção transversal \rightarrow 90 cm \times 100 cm$ $0,90 m^{2}$ HPC / HSC: $f_{ck} = 80 MPa$ $seção transversal \rightarrow 60 cm \times 70 cm$ $0,42 m^{2}$

Fraction Towns (1988) Fraction Towns (1988)<

CONCLUINDO projetar e construir obras bonitas, resistentes, seguras, duráveis e sustentáveis é: • contribuir para a valorização profissional • defender os reduzidos recursos de nosso país

• praticar uma boa engenharia

• é cumprir o juramento da profissão

Durabilidade

O Concreto tem respeito pelo
Meio Ambiente por sua capacidade de:

Ser reciclável
Incuparar a rejetas industriais
Conflorar motariais periguass
Faur pla carbonico CO;
O Concreto é o moterial estrutural mais
adequado para uma construção sustentável.

